Microscopic calculation of the ³**He**(α , γ)⁷**Be reaction rate**

Thomas Neff

DREB 2012

Direct Reactions with Exotic Beams

Pisa, Italy

Mar 26-30, 2012

Overview

Introduction

Effective interaction and many-body approach

- Unitary Correlation Operator Method
- Fermionic Molecular Dynamics

Results

- Bound and scattering states
- Astrophysical S-factor

Discussion

- Dipole matrix elements
- ³He(α , γ)⁷Be vs. ³H(α , γ)⁷Li

³He(α,γ)⁷Be Introduction

Motivation

- 3 He $(\alpha, \gamma)^{7}$ Be one of the key reactions in the solar pp-chains
- in competetion with the ³He(³He,2*p*)⁴He reaction it determines production of ⁷Be and ⁸B neutrinos

What is needed ?

- ⁷Be bound state energies
- ⁷Be bound state wave functions, ANC
- ³He-⁴He scattering states
- dipole matrix elements between bound and scattering states

Potential models (Kim et al. 1982, Mohr 2009, ...)

- ⁴He and ³He are considered as point-like particles
- interacting via an effective nucleus-nucleus potential fitted to bound state properties and phase shifts
- ANCs calculated from *ab initio* wave functions (Nollett 2001, Navratil *et al.* 2007)

Microscopic Cluster Model (Tang *et al.* 1981, Langanke 1986, Kajino 1986...)

- antisymmetrized wave function built with ⁴He and ³He clusters
- some attempts to include polarization effects by adding other channels like ⁶Li plus proton
- interacting via an effective nucleon-nucleon potential, adjusted to describe bound state properties and phase shifts

Our Aim

- fully microscopic wave functions with cluster configurations at large distances and additional polarized A-body configurations in the interaction region
- using a realistic effective interaction

Effective Interaction Nuclear Force

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

- strong repulsive core: nucleons can not get closer than ≈ 0.5 fm
- central correlations

- strong dependence on the orientation of the spins due to the tensor force
- tensor correlations

Effective Interaction Nuclear Force

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

 strong repulsive core: nucleons can not get closer than ≈ 0.5 fm

- central correlations

 strong dependence on the orientation of the spins due to the tensor force

tensor correlations

the nuclear force will induce strong short-range correlations in the nuclear wave function

- normalize two-body density in coordinate space at r=1.0 fm
- normalized two-body densities in coordinate space are identical at short distances for all nuclei
- use the same normalization factor in momentum space high momentum tails agree for all nuclei

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)

Effective Interaction

Effective Interaction Unitary Correlation Operator Method

Correlation Operator

• induce short-range (two-body) central and tensor correlations into the many-body state

$$\mathcal{L} = \mathcal{L}_{\Omega} \mathcal{L}_{r} = \exp\left[-i \sum_{i < j} \mathcal{Q}_{\Omega, ij}\right] \exp\left[-i \sum_{i < j} \mathcal{Q}_{r, ij}\right] \quad , \quad \mathcal{L}^{\dagger} \mathcal{L} = 1$$

 correlation operator should conserve the symmetries of the Hamiltonian and should be of finite-range, correlated interaction phase shift equivalent to bare interaction by construction

Correlated Operators

• correlated operators will have contributions in higher cluster orders

$$\hat{C}^{\dagger} \hat{O} \hat{C} = \hat{Q}^{[1]} + \hat{Q}^{[2]} + \hat{Q}^{[3]} + \dots$$

 two-body approximation: correlation range should be small compared to mean particle distance

Correlated Interaction

$$\mathcal{L}^{\dagger}(\mathcal{I} + \mathcal{V}) \mathcal{L} = \mathcal{I} + \mathcal{V}_{UCOM} + \mathcal{V}_{UCOM}^{[3]} + \dots$$

Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. 65, 50 (2010)

Effective Interaction

UCOM Interaction in Momentum Space V(q, q')

${}^{3}S_{1}$ bare

bare interaction has strong off-diagonal matrix elements connecting to high momenta

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)

Effective Interaction

UCOM Interaction in Momentum Space V(q, q')

${}^{3}S_{1}$ bare

bare interaction has strong off-diagonal matrix elements connecting to high momenta

correlated interaction is **more attractive** at low momenta

matrix elements connecting low- and high- momentum states are strongly reduced

off-diagonal

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)

${}^{3}S_{1} - {}^{3}D_{1}$ bare

q

Effective Interaction

UCOM Interaction in Momentum Space V(q, q')

${}^{3}S_{1}$ bare

bare interaction has strong off-diagonal matrix elements connecting to high momenta

correlated interaction is **more attractive** at low momenta

off-diagonal matrix elements

connecting low- and high- momentum states are **strongly** reduced ${}^{3}S_{1} - {}^{3}D_{1}$ bare

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)

Effective Interaction No-Core Shell Model Calculations

- convergence much improved compared to bare interaction
- effective interaction in two-body approximation converges to different energy then bare interaction
- transformed interaction can be tuned to obtain simultaneously (almost) exact ³He and ⁴He binding energies

Effective Interaction NCSM ⁶Li/⁷Li ground state energy

• effective interaction also works reasonably well for heavier nuclei

Fermionic

Slater determinant

$$\boldsymbol{Q} \rangle = \mathcal{A}\left(\left| \boldsymbol{q}_1 \right\rangle \otimes \cdots \otimes \left| \boldsymbol{q}_A \right\rangle \right)$$

• antisymmetrized A-body state

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357 Antisymmetrization

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle st

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357 see also Antisymmetrized Molecular Dynamics

Horiuchi, Kanada-En'yo, Kimura, . . .

Antisymmetrization

Many-body Approach Restoration of Symmetries

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

$$\mathop{\mathbb{P}}_{\sim}^{\pi} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) \stackrel{R}{\sim} (\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

Many-body Approach Restoration of Symmetries

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying **constraints** on radius, dipole moment, **quadrupole** moment or **octupole** moment and minimizing the energy in the projected energy surface for heavier nuclei

$$\mathop{\mathbb{P}}_{\sim}^{\pi} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) \stackrel{R}{\sim} (\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

Many-body Approach Restoration of Symmetries

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying **constraints** on radius, dipole moment, **quadrupole** moment or **octupole** moment and minimizing the energy in the projected energy surface for heavier nuclei

Multiconfiguration Calculations

• **diagonalize** Hamiltonian in a set of projected intrinsic states

$$\left\{ \left| \, \mathbf{Q}^{(a)} \, \right\rangle \,, \quad a = 1, \ldots, N \right\}$$

$$\mathop{\mathbb{P}}_{\sim}^{\pi} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

$$\sum_{K'b} \langle \mathbf{Q}^{(\alpha)} | \underbrace{HP}_{KK'}^{J^{\pi}} \underbrace{P^{\mathbf{P}=0}}_{KK'} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha} = E^{J^{\pi}\alpha} \sum_{K'b} \langle \mathbf{Q}^{(\alpha)} | \underbrace{P}_{KK'}^{J^{\pi}} \underbrace{P^{\mathbf{P}=0}}_{KK'} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha}$$

Frozen configurations

• antisymmetrized wave function built with ⁴He and ³He FMD clusters up to channel radius α =12 fm

Polarized configurations

FMD wave functions obtained by VAP on 1/2⁻, 3/2⁻, 5/2⁻, 7/2⁻ and 1/2⁺, 3/2⁺ and 5/2⁺ combined with radius constraint in the interaction region

Boundary conditions

 Match relative motion of clusters at channel radius to Whittaker/Coulomb functions with the microscopic *R*matrix method of the Brussels group D. Baye, P.-H. Heenen, P. Descouvemont

Bound states

	Experiment	FMD
E _{3/2-}	-1.59 MeV	-1.49 MeV
E _{1/2-}	-1.15 MeV	-1.31 MeV
r _{ch}	2.647(17) fm	2.67 fm
Q	-	-6.83 <i>e</i> fm²
E _{3/2-}	-2.467 MeV	-2.39 MeV
E _{1/2-}	-1.989 MeV	-2.17 MeV
<i>r</i> _{ch}	2.444(43) fm	2.46 fm
Q	-4.00(3) <i>e</i> fm ²	-3.91 <i>e</i> fm²
	$E_{1/2-}$ r_{ch} Q $E_{3/2-}$ $E_{1/2-}$ r_{ch}	$E_{3/2-}$ -1.59 MeV $E_{1/2-}$ -1.15 MeV r_{ch} 2.647(17) fm Q - $E_{3/2-}$ -2.467 MeV $E_{1/2-}$ -1.989 MeV r_{ch} 2.444(43) fm

- centroid of bound state energies well described if polarized configurations included
- tail of wave functions tested by charge radii and quadrupole moments

dashed lines – frozen configurations only solid lines – polarized configurations in interaction region included

 Scattering phase shifts well described, polarization effects important

Phase shift analysis:

Spiger and Tombrello, PR 163, 964 (1967)

³He(α, γ)⁷Be S-, d- and f-wave Scattering States

dashed lines – frozen configurations only – solid lines – FMD configurations in interaction region included

- polarization effects important
- s- and d-wave scattering phase shifts well described
- 7/2⁻ resonance too high, 5/2⁻ resonance roughly right, consistent with no-core shell model calculations

³He(α, γ)⁷Be **S-Factor**

Nara Singh *et al.*, PRL **93**, 262503 (2004) Bemmerer *et al.*, PRL **97**, 122502 (2006) Confortola *et al.*, PRC **75**, 065803 (2007) Brown *et al.*, PRC **76**, 055801 (2007) Di Leva *et al.*, PRL **102**, 232502 (2009)

- dipole transitions from $1/2^+$, $3/2^+$, $5/2^+$ scattering states into $3/2^-$, $1/2^-$ bound states
- FMD is the only model that describes well the energy dependence and normalization of new high quality data
- fully microscopic calculation, bound and scattering states are described consistently

³He(α, γ)⁷Be **Overlap Functions and Dipole Matrixelements**

- Overlap functions from projection on RGM-cluster states
- Coulomb and Whittaker functions matched at channel radius a=12 fm
- Dipole matrix elements calculated from overlap functions reproduce full calculation within 2%
- cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified

- low-energy *S*-factor dominated by *s*-wave capture
- at 2.5 MeV equal contributions of *s* and *d*-wave capture
- FMD results differ from Kajino results mainly with respect to s-wave capture
- related to short-range part of wave functions ?

³H(α, γ)⁷Li **S-Factor**

- isospin mirror reaction of ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$
- ⁷Li bound state properties and phase shifts well described
- FMD calculation describes energy dependence of Brune et al. data but cross section is larger by about 15%

³He(α , γ)⁷Be and ³H(α , γ)⁷Li **S-Factors consistent ?**

- FMD calculation agrees with normalization and energy dependence of ${}^{3}{\rm He}(\alpha,\gamma){}^{7}{\rm Be}$ data
- FMD calculation agrees with energy dependence but not normalization of ${}^{3}\text{H}(\alpha,\gamma)^{7}\text{Li}$ data
- similar inconsistency observed in other models

Summary

Effective interaction and many-body approach

- explicit inclusion of short-range central and tensor in the UCOM approach provides realistic low-momentum interaction
- FMD basis allows to describe frozen cluster configurations and polarized configurations in the interaction region

³He(α , γ)⁷Be Radiative Capture

- Bound states and scattering states wave functions
- S-factor: energy dependence and normalization agrees with data
- Overlap functions, dipole matrix elements
- ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$ data inconsistent ?

PRL 106, 042502 (2011)

PHYSICAL REVIEW LETTERS

week ending 28 JANUARY 2011

Microscopic Calculation of the ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha, \gamma){}^{7}\text{Li}$ Capture Cross Sections Using Realistic Interactions

Thomas Neff*

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany (Received 12 November 2010; published 25 January 2011)