Microscopic calculation of the ${ }^{3} \mathrm{He}(\alpha, \gamma){ }^{7} \mathrm{Be}$ reaction rate

Thomas Neff
DREB 2012
Direct Reactions with Exotic Beams

Pisa, Italy
Mar 26-30, 2012

Overview

Introduction
Effective interaction and many-body approach

- Unitary Correlation Operator Method
- Fermionic Molecular Dynamics

Results

- Bound and scattering states
- Astrophysical S-factor

Discussion

- Dipole matrix elements
- ${ }^{3} \mathrm{He}(\alpha, \gamma){ }^{7} \mathrm{Be}$ vs. ${ }^{3} \mathrm{H}(\alpha, \gamma){ }^{7} \mathrm{Li}$
- $\quad{ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$

Introduction

Motivation

- ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$ one of the key reactions in the solar pp-chains
- in competetion with the ${ }^{3} \mathrm{He}\left({ }^{3} \mathrm{He}, 2 p\right)^{4} \mathrm{He}$ reaction it determines production of ${ }^{7} \mathrm{Be}$ and ${ }^{8} \mathrm{~B}$ neutrinos

What is needed ?

- ${ }^{7}$ Be bound state energies
- ${ }^{7}$ Be bound state wave functions, ANC
- ${ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ scattering states
- dipole matrix elements between bound and scattering states

Potential models (Kim et al. 1982, Mohr 2009, ...)

- ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ are considered as point-like particles
- interacting via an effective nucleus-nucleus potential fitted to bound state properties and phase shifts
- ANCs calculated from ab initio wave functions (Nollett 2001, Navratil et al. 2007)

Microscopic Cluster Model (Tang et al. 1981, Langanke 1986, Kajino 1986)

- antisymmetrized wave function built with ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ clusters
- some attempts to include polarization effects by adding other channels like ${ }^{6} \mathrm{Li}$ plus proton
- interacting via an effective nucleon-nucleon potential, adjusted to describe bound state properties and phase shifts

Our Aim

- fully microscopic wave functions with cluster configurations at large distances and additional polarized A-body configurations in the interaction region
- using a realistic effective interaction
- Effective Interaction
: Nuclear Force

Argonne V18 ($\mathrm{T}=0$)
spins aligned parallel or perpendicular to the relative distance vector

- strong repulsive core: nucleons can not get closer than $\approx 0.5 \mathrm{fm}$
\rightarrow central correlations
- strong dependence on the orientation of the spins due to the tensor force
\rightarrow tensor correlations
- Effective Interaction
: Nuclear Force

Argonne V18 ($\mathrm{T}=0$)
spins aligned parallel or perpendicular to the relative distance vector

- strong repulsive core: nucleons can not get closer than $\approx 0.5 \mathrm{fm}$
\rightarrow central correlations
- strong dependence on the orientation of the spins due to the tensor force
\rightarrow tensor correlations
the nuclear force will induce strong short-range correlations in the nuclear wave function

: Universality of short-range correlations

coordinate space

$S=1, M_{S}=1, T=0$

momentum space

$$
S=1, T=0
$$

- normalize two-body density in coordinate space at $r=1.0 \mathrm{fm}$
- normalized two-body densities in coordinate space are identical at short distances for all nuclei
- use the same normalization factor in momentum space - high momentum tails agree for all nuclei

-

Correlation Operator

- induce short-range (two-body) central and tensor correlations into the many-body state

$$
\underset{\sim}{C}=\underset{\sim}{C_{\Omega}}{\underset{\sim}{r}}_{r}=\exp \left[-i \sum_{i<j} \underset{\sim}{g} \Omega, i j\right] \exp \left[-i \sum_{i<j} \underset{\sim}{r} r_{r, i j}\right], \quad \underset{\sim}{C} \underset{\sim}{C}=\underset{\sim}{1}
$$

- correlation operator should conserve the symmetries of the Hamiltonian and should be of finite-range, correlated interaction phase shift equivalent to bare interaction by construction

Correlated Operators

- correlated operators will have contributions in higher cluster orders

$$
{\underset{\sim}{C}}^{\dagger} \underset{\sim}{O} \underset{\sim}{C}=\hat{\sim}_{\hat{O}}^{[1]}+{\underset{\sim}{\hat{O}}}^{[2]}+{\underset{\sim}{\hat{O}}}^{[3]}+\ldots
$$

- two-body approximation: correlation range should be small compared to mean particle distance

Correlated Interaction

$$
{\underset{\sim}{C}}^{\dagger}(\underset{\sim}{T}+\underset{\sim}{V}) \underset{\sim}{C}=\underset{\sim}{T}+\underset{\sim}{V} \text { UCOM }+\underset{\sim}{V}{ }_{U C O M}^{[3]}+\ldots
$$

: UCOM Interaction in Momentum Space $V\left(q, q^{\prime}\right)$
${ }^{3} S_{1}$ bare

${ }^{3} S_{1}-{ }^{3} D_{1}$ bare

- Effective Interaction

: UCOM Interaction in Momentum Space $V\left(q, q^{\prime}\right)$
${ }^{3} S_{1}$ bare

${ }^{3} S_{1}$ correlated

bare interaction has strong off-diagonal matrix elements connecting to high momenta
correlated interaction is more attractive at low momenta

off-diagonal

 matrix elements connecting low- and high- momentum states are strongly reduced${ }^{3} S_{1}-{ }^{3} D_{1}$ bare

${ }^{3} S_{1}-{ }^{3} D_{1}$ correlated

- Effective Interaction

: UCOM Interaction in Momentum Space $V\left(q, q^{\prime}\right)$
${ }^{3} S_{1}$ bare

${ }^{3} S_{1}$ correlated

bare interaction has strong off-diagonal matrix elements connecting to high momenta
correlated interaction is more attractive at low momenta

off-diagonal

 matrix elements connecting low- and high- momentum states are strongly reduced
${ }^{3} S_{1}-{ }^{3} D_{1}$ correlated

- No-Core Shell Model Calculations

- convergence much improved compared to bare interaction
- effective interaction - in two-body approximation - converges to different energy then bare interaction
- transformed interaction can be tuned to obtain simultaneously (almost) exact ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ binding energies
: NCSM $\left.{ }^{6} \mathrm{Li}\right]^{7} \mathrm{Li}$ ground state energy

- effective interaction also works reasonably well for heavier nuclei
- Many-body Approach
: Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$
|Q\rangle=\underset{\sim}{\mathcal{A}}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes\left|q_{A}\right\rangle\right)
$$

- antisymmetrized A-body state
- Many-body Approach
: Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$
|Q\rangle=\underset{\sim}{\mathcal{A}}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes\left|q_{A}\right\rangle\right)
$$

- antisymmetrized A-body state

Molecular

single-particle states

$$
\langle\mathbf{x} \mid q\rangle=\sum_{i} c_{i} \exp \left\{-\frac{\left(\mathbf{x}-\mathbf{b}_{i}\right)^{2}}{2 a_{i}}\right\} \otimes\left|\chi^{\uparrow}{ }_{i}, \chi^{\downarrow}\right\rangle \otimes|\xi\rangle
$$

- Gaussian wave-packets in phase-space (complex parameter \mathbf{b}_{i} encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_{i} is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state
- Many-body Approach
: Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$
|Q\rangle=\underset{\sim}{\mathcal{A}}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes\left|q_{A}\right\rangle\right)
$$

- antisymmetrized A-body state

Molecular

single-particle states

$$
\langle\mathbf{x} \mid q\rangle=\sum_{i} c_{i} \exp \left\{-\frac{\left(\mathbf{x}-\mathbf{b}_{i}\right)^{2}}{2 a_{i}}\right\} \otimes\left|\chi^{\uparrow}{ }_{i}, \chi^{\downarrow}{ }_{i}\right\rangle \otimes|\xi\rangle
$$

- Gaussian wave-packets in phase-space (complex parameter \mathbf{b}_{i} encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_{i} is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state
- Many-body Approach
: Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$
|Q\rangle=\underset{\sim}{\mathcal{A}}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes\left|q_{A}\right\rangle\right)
$$

- antisymmetrized A-body state

Molecular

single-particle states

$$
\langle\mathbf{x} \mid q\rangle=\sum_{i} c_{i} \exp \left\{-\frac{\left(\mathbf{x}-\mathbf{b}_{i}\right)^{2}}{2 a_{i}}\right\} \otimes\left|\chi^{\uparrow}{ }_{i}, \chi^{\downarrow}{ }_{i}\right\rangle \otimes|\xi\rangle
$$

- Gaussian wave-packets in phase-space (complex parameter \mathbf{b}_{i} encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_{i} is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle st
- Many-body Approach
: Restoration of Symmetries

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

$$
{\underset{\sim}{P}}^{\pi}=\frac{1}{2}(1+\pi \underset{\sim}{\square})
$$

$$
\begin{aligned}
& {\underset{\sim}{P}}_{\prime}^{\prime}=\frac{2 J+1}{8 \pi^{2}} \int \mathrm{~d}^{3} \Omega{D_{M K}^{\prime}}^{\star}(\Omega) \underset{\sim}{R}(\Omega) \\
& {\underset{\sim}{P}}^{\mathbf{P}}=\frac{1}{(2 \pi)^{3}} \int \mathrm{~d}^{3} X \exp \{-i(\underset{\sim}{\mathbf{P}}-\mathbf{P}) \cdot \mathbf{X}\}
\end{aligned}
$$

- Many-body Approach
: Restoration of Symmetries

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian

$$
{\underset{\sim}{P}}^{\pi}=\frac{1}{2}(1+\pi \underset{\sim}{1})
$$

- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface for heavier nuclei
- Many-body Approach
: Restoration of Symmetries

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian

$$
{\underset{\sim}{P}}^{\pi}=\frac{1}{2}(1+\pi \underset{\sim}{\Pi})
$$

- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

$$
{\underset{\sim}{P}}_{M K}^{\prime}=\frac{2 J+1}{8 \pi^{2}} \int \mathrm{~d}^{3} \Omega D_{M K}^{\prime}{ }^{\star}(\Omega) \underset{\sim}{R}(\Omega)
$$

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum

$$
{\underset{\sim}{P}}^{\mathbf{P}}=\frac{1}{(2 \pi)^{3}} \int \mathrm{~d}^{3} X \exp \{-i(\underset{\sim}{\mathbf{P}}-\mathbf{P}) \cdot \mathbf{X}\}
$$ and Parity Projection (VAP) for light nuclei

- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface for heavier nuclei

Multiconfiguration Calculations

- diagonalize Hamiltonian in a set of projected intrinsic states

$$
\left\{\left|Q^{(a)}\right\rangle, \quad a=1, \ldots, N\right\}
$$

$$
\sum_{K^{\prime} b}\left\langle Q^{(a)}\right| \underset{\sim}{\underset{\sim}{H} \mathcal{K}^{\prime}}{\underset{\sim}{P}}^{\pi} P^{\mathbf{P}=0}\left|Q^{(b)}\right\rangle \cdot C_{K^{\prime} b}^{\alpha}=
$$

$$
E^{\jmath^{\pi} \alpha} \sum_{K^{\prime} b}\left\langle Q^{(a)}\right|{\underset{\sim}{K K} K^{\prime}}_{P_{\sim}^{\pi}}^{P^{\mathbf{P}=0}}\left|Q^{(b)}\right\rangle \cdot c_{K^{\prime} b}^{\alpha}
$$

Frozen configurations

- antisymmetrized wave function built with ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ FMD clusters up to channel radius $a=12 \mathrm{fm}$

Polarized configurations

- FMD wave functions obtained by VAP on $1 / 2^{-}, 3 / 2^{-}, 5 / 2^{-}, 7 / 2^{-}$and $1 / 2^{+}, 3 / 2^{+}$ and $5 / 2^{+}$combined with radius constraint in the interaction region

Frozen

Boundary conditions

- Match relative motion of clusters at channel radius to Whittaker/Coulomb functions with the microscopic R matrix method of the Brussels group
D. Baye, P.-H. Heenen, P. Descouvemont
${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$
: p-wave Bound and Scattering States

Bound states

		Experiment	FMD
${ }^{7} \mathrm{Be}$	$E_{3 / 2-}$	-1.59 MeV	-1.49 MeV
	$E_{1 / 2-}$	-1.15 MeV	-1.31 MeV
	r_{ch}	$2.647(17) \mathrm{fm}$	2.67 fm
	Q	-	-6.83 efm
${ }^{7} \mathrm{Li}$	$E_{3 / 2-}$	-2.467 MeV	-2.39 MeV
	$E_{1 / 2-}$	-1.989 MeV	-2.17 MeV
	r_{ch}	$2.444(43) \mathrm{fm}$	2.46 fm
	Q	$-4.00(3) \mathrm{efm}$	$-3.91 e \mathrm{fm}^{2}$

- centroid of bound state energies well described if polarized configurations included
- tail of wave functions tested by charge radii and quadrupole moments

Phase shift analysis:
Spiger and Tombrello, PR 163, 964 (1967)

dashed lines - frozen configurations only solid lines - polarized configurations in interaction region included

- Scattering phase shifts well described, polarization effects important

${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$
 : s-, d - and f-wave Scattering States

dashed lines - frozen configurations only - solid lines - FMD configurations in interaction region included

- polarization effects important
- s - and d-wave scattering phase shifts well described
- 7/2- resonance too high, 5/2- resonance roughly right, consistent with no-core shell model calculations

$$
\begin{gathered}
\text { S-factor: } \\
S(E)=\sigma(E) E \exp ^{2}\{2 \pi \eta\} \\
\eta=\frac{\mu Z_{1} Z_{2} e^{2}}{k}
\end{gathered}
$$

Nara Singh et al., PRL 93, 262503 (2004)
Bemmerer et al., PRL 97, 122502 (2006)
Confortola et al., PRC 75, 065803 (2007)
Brown et al., PRC 76, 055801 (2007)
Di Leva et al., PRL 102, 232502 (2009)

- dipole transitions from $1 / 2^{+}, 3 / 2^{+}, 5 / 2^{+}$scattering states into $3 / 2^{-}, 1 / 2^{-}$bound states
\Rightarrow FMD is the only model that describes well the energy dependence and normalization of new high quality data
\leadsto fully microscopic calculation, bound and scattering states are described consistently

: Overlap Functions and Dipole Matrixelements

- Overlap functions from projection on RGM-cluster states
- Coulomb and Whittaker functions matched at channel radius $a=12 \mathrm{fm}$
- Dipole matrix elements calculated from overlap functions reproduce full calculation within 2\%
- cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified

- low-energy S-factor dominated by s-wave capture
- at 2.5 MeV equal contributions of s - and d-wave capture
- FMD results differ from Kajino results mainly with respect to s-wave capture
- related to short-range part of wave functions ?
- $\left.{ }^{3} H(\alpha, \gamma)\right)^{7 i}$

S-Factor

$$
\begin{gathered}
\text { S-factor: } \\
S(E)=\sigma(E) E \exp ^{2}\{2 \pi \eta\} \\
\eta=\frac{\mu z_{1} z_{2} e^{2}}{k}
\end{gathered}
$$

Brune et al., PRC 50, 2205 (1994)

- isospin mirror reaction of ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$
- ${ }^{7}$ Li bound state properties and phase shifts well described
\Rightarrow FMD calculation describes energy dependence of Brune et al. data but cross section is larger by about 15%
- ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$ and ${ }^{3} \mathrm{H}(\alpha, \gamma)^{7} \mathrm{Li}$
- S-Factors consistent ?

- FMD calculation agrees with normalization and energy dependence of ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7}$ Be data
- FMD calculation agrees with energy dependence but not normalization of ${ }^{3} \mathrm{H}(\alpha, \gamma){ }^{7}$ Li data
- similar inconsistency observed in other models

Summary

Effective interaction and many-body approach

- explicit inclusion of short-range central and tensor in the UCOM approach provides realistic low-momentum interaction
- FMD basis allows to describe frozen cluster configurations and polarized configurations in the interaction region

${ }^{3} \mathrm{He}(\alpha, \gamma){ }^{7} \mathrm{Be}$ Radiative Capture

- Bound states and scattering states wave functions
- S-factor: energy dependence and normalization agrees with data
- Overlap functions, dipole matrix elements
- ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7}$ Be and ${ }^{3} \mathrm{H}(\alpha, \gamma)^{7} \mathrm{Li}$ data inconsistent ?

PRL 106, 042502 (2011)
PHYSICAL REVIEW LETTERS

Microscopic Calculation of the ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$ and ${ }^{3} \mathrm{H}(\alpha, \gamma)^{7} \mathrm{Li}$ Capture Cross Sections Using Realistic Interactions

Thomas Neff*
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
(Received 12 November 2010; published 25 January 2011)

