Shell evolution in neutron-rich Al isotopes around N=20 shell closure

Chiara Nociforo GSI, Darmstadt

Evolution of neutron shell structure
 → magic numbers (N = 16, 20), shell gaps

• GSI- FRS results on one-neutron removal reactions \rightarrow ³²⁻³⁴Al momentum distribution analysis

"DREB12" March 26-29, 2012 – Pisa, Italy

Magic numbers and shell gaps

To what extent the shell model is still valid in nuclei with large proton-neutron asymmetry ?

For light nuclei far off stability

N=20 gap evolution

 $Z=8 \rightarrow Z=20$, adding *sd* protons \rightarrow wide N=20 gap

T. Otsuka et al., PRL 104 (2010) 012501

C. Nociforo -"DREB12"

Direct measurements of the weakness of the N=20 shell closure are difficult at lower Z

The n-rich Al isotopes are easier to access experimentally and are located in a *transition* region between the spherical shell of Si nuclei and the deformed Mg isotopes.

Two-neutron separation energy S_{2n}

E. Caurier, et al., PRC58 (1998) 2033

AI: Exp S_{2n} do not show anomalies and are perfectly reproduced by shell model calculations involving the full *sd* proton shell (Z = 8) and the *pf* neutron shell (N = 20) as valence space

C. Nociforo -"DREB12"

Al isotopic chain (A=32-36)

• β -decay and g-factor measurements available up to A=34

magnetic moments measurements of ^{33,34}Al show large discrepancies with shell model predictions

→ non-negligible presence of intruder configurations $\sim 25\%$ in ³³Al and 60% in ³⁴Al, at least

(P. Himpe, *et al.*, PLB643 (2006) 257, PLB658 (2008) 203)

→ polarization effects due in even-mass Al (N=21-23) pf shellto the unpaired $1d_{5/2}$ proton N =20

1d_{5/2}.00000x

р

n

sd shell

1n removal reactions test the neutron single particle structure

1n removal reactions at relativistic energies

At high energy

structure & reaction mechanism can be much easily disentangle

calculations: Glauber theory $\longrightarrow |\psi\rangle = \text{core} + \text{neutron},$ eikonal approx.

$$\frac{d\sigma}{dp_{//}} = \int d\mathbf{r_t} \left| \frac{1}{\sqrt{2\pi}} \int \varphi_0(\mathbf{r_t}, z) e^{ip_z z} \right|^2 \int d\mathbf{b} D(\mathbf{b}, \mathbf{r_t})$$

Sensitivity of the p// distribution to single particle states:

- Shape of $d\sigma/dp_{//}$ of the residual nucleus $\rightarrow l_n$ of the removed nucleon
- Cross section $\sigma_{-1n} \rightarrow$ spectroscopic factors

C. Nociforo -"DREB12"
$$\sigma_{-1n} = \sum_{l} S_{l} \sigma^{sp}(\psi_{nlj} \otimes Al(I_{c}^{\pi}))$$

Experimental technique

Relativistic energy RIBs advantages:

- thick target
- small forward scattering angles

25

20

15

10

5

0

does not change the results of the fit

--- fit assuming $S(\neq 0) = 0$ $S(\neq 1) < 1.63, 60\%$ upper limit intruder configurations

$^{34}AI \rightarrow n + ^{33}AI$ at 880 MeV/u

 $\sigma_{\text{-1n}}$ = 81±4 mb , Γ_{FWHM} = 134±3 MeV/c

 σ_{-1n} = 75±4 mb, Γ_{FWHM} = 145±3 MeV/c

³⁵Al_{a.s.}(5/2+)

Mixing in ³³⁻³⁵Al _{g.s.}

Evolution of single particle neutron occupancy

C. Nociforo -"DREB12"

Summary

The evolution of the single particle occupancy in the ${}^{33,34,35}AI_{g.s.}$ studied through precise measurements of p// and σ_{-1n} performed at relativistic energies (\approx 900MeV/u) and compared with shell model predictions

- p// does not exclude the presence of intruder states in ³³Al (N=20) the inferred 2s_{1/2} neutron occupancy is 20-40% less than USDB predicted one
- 20-60% intruder /=1 occupancy found in ³⁴Al (N=21), in agreement with g factor measurement

lowering of the $2p_{3/2}$ level , similar to ${}^{33}Mg$

 1f_{7/2} occupancy increases adding neutrons, and correspondingly 1d_{3/2} one decreases.

List of collaborators

T. Aumann¹, D. Boutin², B. A. Brown⁴, D. Cortina-Gil⁵, B. Davids⁶, M. Diakaki⁷, F. Farinon^{1,2},
H. Geissel¹, R. Gernhäuser⁸, R. Janik⁹, B. Jonson¹⁰, R. Kanungo³, B. Kindler¹, R. Knöbel^{1,2},
R. Krücken⁸, N. Kurz, M. Lantz¹⁰, H. Lenske², Yu.A. Litvinov¹, K. Mahata¹, P. Maeirbeck⁸,
A. Musumarra^{11,12}, T. Nilsson¹⁰, T. Otsuka¹³, C. Perro³, A. Prochazka^{1,2}, C. Scheidenberger^{1,2},
B. Sitar⁹, P. Strmen⁹, B. Sun², I. Szarka⁹, I. Tanihata¹⁴, H. Weick¹, M. Winkler¹

¹GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ²Justus-Liebig University, Gießen, Germany ³Astronomy and Physics Department, Saint Mary's University, Halifax, Canada ⁴NSCL, Michigan State University, East Lansing, USA ⁵Universidad de Santiago de Compostela, Santiago de Compostela, Spain ⁶TRIUMF, Vancouver, Canada ⁷National Technical University, Athens, Greece ⁸Physik Department E12, Technische Universität München, Garching, Germany ⁹Faculty of Mathematics and Physics, Comenius University, Bratislava, Slovakia ¹⁰Fundamental Physics, Chalmers University of Technology, Göteborg, Sweden ¹¹Università di Catania, Catania, Italy ¹²INFN-Laboratori Nazionali del Sud, Catania, Italy ¹³Center for Nuclear Study, University of Tokyo, Saitama, Japan ¹⁴Research Center for Nuclear Physics, Osaka, Japan

C. Nociforo -"DREB12"