Indirect studies of astrophysical reaction rates

Indirect ¹⁸Ne(α ,p)²¹Na Hot-CNO breakout studies and the utilisation of cluster-transfer reactions with TIGRESS-SHARC

- Stellar explosions and reaction rates
- Experiment: reactions, instrumentation, and data
- Prospects for RIB clustertransfers for astrophysics

Christian Aa. Diget and Phillip Adsley, DREB, 26th March 2012

In collaboration with:

L. Achourí, G.C. Ball, J.C. Blackmon, J.R. Brown, W.N. Catford, R.M. Churchman, D. Cross, S.P. Fox, B.R. Fulton, A. Garnsworthy, G. Hackman, U. Hager, L. Línhardt, M. Matos, N.A. Orr, C.J. Pearson, M. Pearson, F. Sarazín, D. Smalley, C.E. Svensson, E. Tardíff, S. Williams, and G.L. Wilson.

Novae and X-ray bursts

- Novae and X-ray bursts
 - Thermo-nuclear run-away on surface of white dwarf / neutron star in binary system
 - Fuelled by material from red-giant companion
 - Recurrent in time scales of hoursdays (X-ray bursts) up to 10⁴-10⁵ years (classical novae)

15 months

- 22 months
- Nova-ejecta (Cygni-1992) observed by Hubble 1993,1994 (d = 10³ a.u.)

GAMMA-RAY LINES FROM NOVAE

DONALD D. CLAYTON AND FRED HOYLE* Department of Space Physics and Astronomy, Rice University Received 1973 November 12

Gamma-ray telescopes: COMPTEL/INTEGRAL, FERMI/GLAST

Nova / X-ray burst illustration: David Hardy/PPARC; F. Paresce, R. Jedrzejewski (STScl-1994-06), NASA/ESA; Clayton & Hoyle., APJ, 187:L101 (1974); S. Plüschke, et al., in Exploring the

Mork Indirect studies of astrophysical reaction rates, C.Aa. Diget

Nuclear measurements of Hot-CNO breakout

target charge to \mathcal{E}_{0}

tegrand relative he target charge he width hift is observed g energy as U the Gamow N fhhs eanith the (2) starts (ly the Gamow er a region . This can be eqmpeting chorgiosion ppresspring ercasergiqe RI suppressu k^mmay th cases lead Veak³¹ figure be shiftsifare a the is hit is is c hthe shifts is at a higher T Y₩4h20≤9, 18 1_0.(8) ridotowoppens erengionsbut 1 n dripline the neutron tions warrants and wanging nances below dy pointed pproximation nces below tion rate for koxpation on repatreda

lintegsinden d

on of East(8)

H. Schatz, NSCL-MSU

Rauscher, Phys. Rev. C, 81:045807 (2010)

EHCNO ENGINE LCNO

Utilising RIB transfer reactions in inverse kinematics

Inverse kinematics transfer reactions to populate states of interest in ²²Mg and ²⁴Al with detection of subsequent decay channels:

- For the ¹⁸Ne(α,p)²¹Na reaction:
 ⁶Li(²⁰Na,α)²²Mg(,py)²¹Na
- For the ²³Mg(p,γ)²⁴Al reaction:
 - ${}^{6}\text{Li}({}^{20}\text{Na,d}){}^{24}\text{Al}(,\gamma){}^{24}\text{Al}$
 - ⁶Li(²⁰Na,d)²⁴Al(,pγ)²³Mg
- Measuring angular distributions for the light ejectile
- Potentially angular correlations between the ejectile and the secondary particle (p or γ)

- Compact particle detector array around interaction point
 - Particle spectroscopy
 - Ejectile PID from dE-E
- HPGe γ-ray spectrometer
 - high-resolution spectroscopy from γ-ray detection

RIB production at **TRIUMF**

- TRIUMF facility, Vancouver (Cyclotron primary beam):
 - 500-MeV 100-µA continuous proton beam
- ISAC (Isotope Separator and Accelerator):
 - RIB production targets: Ta, Ni, ZiC, SiC, UCx, UO
 - Chemical selectivity from ion sources: Surface, laser, electron plasma
 - Magnetic separation of beams (A/q)
 - Super-conducting Linac (10.0 MeV/u)
- Intense RIBs for direct reactions

Compact setup for reaction studies: TIGRESS/SHARC

The TIGRESS gamma-ray detector system

- TIGRESS: TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer:
 - Array of 10-12 HPGe gamma detectors.
 - 4 crystals with segmented contacts.
 - Doppler corrected energies from position measurement.
 - Efficiency: 5% at 4 MeV.
 - Doppler corrected gamma resolution: with pulse-shape analysis we have FWHM < 1% for 10 MeV/u RIB.

Sharc: Silicon Highly-segmented Array for Reactions and Coulex

- SHARC: Silicon Highly-segmented Array for Reactions and Coulex:
 - Upstream and downstream boxes (45-80 and 95-135 deg).
 - Upstream and downstream CDs (10-40 and 140-170).
 - dE-E for all angles 0-135 deg lab
 - Ranges: 14 MeV, 35 MeV, 180 MeV, 600 MeV
 - Energy resolution (Digital, Moving Window Deconvolution): 25 keV FWHM.

$^6\text{Li}(^{20}\text{Na},\alpha)^{22}\text{Mg}(,p\gamma)^{21}\text{Na}$ and $^6\text{Li}(^{20}\text{Na},d)^{24}\text{Al}(,p\gamma)^{23}\text{Mg}$

- SHARC+TIGRESS
- 200µm 6LiF target
- ²⁰Na at 6MeV/u
 - dE-E (140µm + 1000µm silicon)
 - Ranges: 14 MeV, 35 MeV, 180 MeV, 600 MeV

Unadjusted particle-identification

reaction rates, C.Aa. Diget

P. Adsley, University of York

$^6\text{Li}(^{20}\text{Na},\alpha)^{22}\text{Mg}(,p\gamma)^{21}\text{Na}$ and $^6\text{Li}(^{20}\text{Na},d)^{24}\text{Al}(,p\gamma)^{23}\text{Mg}$

- SHARC+TIGRESS
- 200µm 6LiF target
- ²⁰Na at 6MeV/u
 - dE-E (140µm + 1000µm silicon)
 - Ranges: 14 MeV, 35 MeV, 180 MeV, 600 MeV

Unadjusted particle-identification

Impact-angle-adjusted particle-identification

TIGRESS γ -ray spectrometer, ⁶Li(²⁰Na, α)²²Mg:

- Alpha-gated γ-ray spectrum
 - 200µm 6LiF target
 - ²⁰Na at 6MeV/u
- BGO-suppressed
- Crystal-crystal addback

TIGRESS γ -ray spectrometer, ⁶Li(²⁰Na, α)²²Mg:

Alpha-gated, addback, suppressed gamma spectrum

500

- Alpha-gated γ-ray spectrum
 - 200µm 6LiF target
 - ²⁰Na at 6MeV/u
- BGO-suppressed
- Crystal-crystal addback
- Doppler-corrected assuming direct reaction on ⁶Li
- Only corrected at the optimized individual-crystal level
- Strong fusion-evaporation and random coincidences with β -delayed γ rays and 511-keV β ⁺ annihilation

ដ្ម័12000

Ö10000

8000

6000

4000

2000

• Work on timing gates ongoing

Alpha-gated doppler-corrected gamma spectrum

TIGRESS γ -ray spectrometer, ⁶Li(²⁰Na, α)²²Mg:

- Alpha–gated γ–ray spectrum
 - 200µm 6LiF target
 - ²⁰Na at 6MeV/u
- BGO-suppressed
- Crystal–crystal addback
- Doppler-corrected assuming direct reaction on ⁶Li
- Only corrected at the individual-crystal level
- Strong fusion-evaporation and random coincidences with β -delayed γ rays and 511-keV β^+ annihilation

ដ្ម័12000

ວິ10000

8000

6000

4000

2000

Work on timing gates ongoing

Energy / keV

2500

TIGRESS γ -ray spectrometer, $p(^{20}Na,p')^{20}Na(,\gamma)$

- Proton-gated γ-ray spectrum:
 ²⁰Na(p,p')²⁰Na*(,γ)
- Adsorbed water
- Limited kinematic acceptance

Proton-gated doppler-corrected gamma spectrum

TIGRESS γ -ray spectrometer, $p(^{20}Na,p')^{20}Na(,\gamma)$

- Proton-gated γ-ray spectrum:
 ²⁰Na(p,p')²⁰Na*(,γ)
- Adsorbed water
- Limited kinematic acceptance

Proton-gated doppler-corrected gamma spectrum

TIGRESS γ -ray spectrometer, $p(^{20}Na,p')^{20}Na(,\gamma)$

- Proton-gated γ-ray spectrum:
 ²⁰Na(p,p')²⁰Na*(,γ)
- Adsorbed water

Proton-kinematics for 596-keV 20Na state

40

K Indirect studies of astrophysical reaction rates, C.Aa. Diget

⁶Li(²⁰Na,d)²⁴Al(, $p\gamma$)²³Mg for ²³Mg(p,γ)²⁴Al states

- Deuteron-gated γ-ray spectrum: ⁶Li(²⁰Na,d)²⁴Al*(,p)²³Mg*(,γ)²³Mg
- ²³Mg first-excited state (451 keV)

Deuteron-gated doppler-corrected gamma spectrum

⁶Li(²⁰Na,d)²⁴Al(, $p\gamma$)²³Mg for ²³Mg(p,γ)²⁴Al states

- Deuteron-gated γ-ray spectrum: ⁶Li(²⁰Na,d)²⁴Al*(,p)²³Mg*(,γ)²³Mg
- ²³Mg first-excited state (451 keV)

Deuteron-gated doppler-corrected gamma spectrum

P. Adsley, University of York

⁶Li(²⁰Na,d)²⁴Al(, $p\gamma$)²³Mg for ²³Mg(p,γ)²⁴Al states

reaction rates, C.Aa. Diget

Direct-reaction studies to determine Γ_{α}

Indirect reaction-rate studies, determining Γ_{α} :

$$\sigma(E) \propto (2J+1) rac{\Gamma_{initial}\Gamma_{final}}{\Gamma_{total}} \exp(-rac{E_r}{k_B T})$$

- Widths (Γ_{α} is the smallest width):
 - Using measured α -spectroscopic factors in mirror α -transfer to infer Γ_{α} from mirror symmetry
 - Measuring $\alpha-spectroscopic$ factors with RIB $\alpha-transfer$ to deduce Γ_{α}
- Hot-CNO breakout reactions:
 - ¹⁵O(α,γ)¹⁹Ne

Jenkins, DREB-2012 Tan et al., Phys. Rev. C, 79:055805 (2009) Kanungo et al., Phys. Rev. C, 74:045803 (2006)

Direct-reaction studies to determine Γ_{α}

Indirect reaction-rate studies, determining Γ_{α} :

- Widths (Γ_{α} is the smallest width):
 - Using measured α -spectroscopic factors in mirror α -transfer to infer Γ_{α} from mirror symmetry
 - Measuring $\alpha-spectroscopic$ factors with RIB $\alpha-transfer$ to deduce Γ_{α}
- Hot-CNO breakout reactions:
 - ¹⁵O(α,γ)¹⁹Ne

$$\sigma(E) \propto (2J+1) \, rac{\Gamma_{\it initial} \Gamma_{\it final}}{\Gamma_{\it total}} \, \exp(-rac{E_r}{k_B T})$$

- Γ_{α} for Hot-CNO breakout reactions:
 - ⁷Li(¹⁵O,tγ)¹⁹Ne
 - ⁷Li(¹⁸Ne,tp)²¹Na
 - ⁷Li(¹⁴O,tp)¹⁷F
- Γ_{α} for ($\alpha,p)$ reactions up to ^{40}Ca
- Parallel studies on mirror nuclei
- Possibly including (⁶Li,d)

Direct-reaction studies to determine Γ_{α}

Indirect reaction-rate studies, determining Γ_{α} :

- Widths (Γ_{α} is the smallest width):
 - Using measured α -spectroscopic factors in mirror α -transfer to infer Γ_{α} from mirror symmetry
 - Measuring $\alpha-spectroscopic$ factors with RIB $\alpha-transfer$ to deduce Γ_{α}
- Hot-CNO breakout reactions:
 - ¹⁵O(α,γ)¹⁹Ne

$$\sigma(E) \propto (2J+1) rac{\Gamma_{initial} \Gamma_{final}}{\Gamma_{total}} \exp(-rac{E_r}{k_B T})$$

- Γ_{α} for Hot-CNO breakout reactions:
 - ⁷Li(¹⁵O,tγ)¹⁹Ne
 - ⁷Li(¹⁸Ne,tp)²¹Na
 - ⁷Li(¹⁴O,tp)¹⁷F
- Γ_{α} for ($\alpha,p)$ reactions up to ^{40}Ca
- Parallel studies on mirror nuclei
- Possibly including (⁶Li,d)
- Intense radioactive ion-beams necessary: 10⁶-10⁸ pps depending on reaction. Beams under development at:

TRIUMF ISAC-II

HIE-ISOLDE

SPIRAL-2

Jenkins, DREB-2012 Tan et al., Phys. Rev. C, 79:055805 (2009) Kanungo et al., Phys. Rev. C, 74:045803 (2006)

Investigating stellar explosions

 Hot CNO breakout reaction rates for X-ray bursts – and possibly Novae

 States for the ¹⁸Ne(α,p)²¹Na, and ²³Mg(p,γ)²⁴Al reactions searched for through the ⁶Li(²⁰Na,x) reaction

 Prospects for RIB clustertransfers for astrophysics, particularly α-transfer

- United Kingdom:
 - University of York (particularly P. Adsley)
 - University of Manchester
 - University of Surrey
 - University of Edinburgh
 - University of Liverpool
- Canada:
 - TRIUMF, Vancouver, BC
 - Saint Mary's University, NS
- McMaster University, ON
 - Simon Fraser University, BC
- Oniversité de Montréal, QC
- University of Guelph, ON
- USA:
 - Colorado School of Mines, CO
 - Louisiana State University, LA
- France:
 - GANIL, Caen
 - LPC, Université de Caen
 - IPN-Orsay, Université Paris Sud
- Spain:
 - IFC-CSIC, Universidad de Valencia
- Italy:
 - INFN, Laboratori Nazionali di Legnaro

