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The X-Ray Burster Scenario, HCNO Cycles & Breakout: High energy scenarios: Red
giant/Neutron star systems, mass accretion and Thermo-Nuclear Runaway. Hot
Carbon-Nitrogen-Oxygen cycle, competing breakout paths, the RP-process.

18Ne(a,p) / 2!Na(p,p’) reactions: Astrophysical importance, implications, past
experimental difficulties / unknowns. Use of inverse kinematics & radioactive

beams to probe states in 22Mg.

Development of data sort code and analysis: Methodology — TIGRESS / BAMBINO.
Gamma-ray gating, resonance spectra — particle angular distributions.

Simulation of experimental data, simulation of angular distributions — comparison
to data. Potential assignments to states.

Reaction rates




* The 8Ne(a,p) 2!Na reaction - breakout from the
Hot-CNO cycle in X-Ray Bursters (XRBs). At high T
bypasses °0(a,y).

* Nucleosynthesis of proton rich isotopes from
the rp-process. Affects energy generation in these
environments.

- Dominant reactions, cross-sections, resonances
and properties unknown.

* Binary star system - Red giant and a neutron star (figure). Red giant fills Roche lobe -
matter falls into the neutron star accretion disk before surface.

- Matter electron degenerate — T increases as H and He deposit on neutron star - leads
to thermal instabilities and runaway reactions at above T, > 0.5 (5x108K)

“Breakout” from H-CNO cycle into rp-process at T, 2 1 — heavy element synthesis.




Main generation in Novae dominated by
Hot-CNO cycle at T, < 0.4 [3].

Nucleosynthesis dictated by “waiting
points”.

Competition between (p,y), (a,p), (o,y) and

(B*v).
path (ty, = 122.25, T, > 0.4)

For T, > 0.8, energetic a’s: reaction rates

increase. 18Ne(a,p) bypasses °O(a,y)°Ne
alters abundance.
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Energy generation proceeds through rp-process; proton captures / B*-decays to

heavier “proton rich” isotopes.




Difficult to produce high intensity *Ne [ 00—
beams (t,,, = 1.67s). Higher energy beams F BNe(on,p)”'Na

only thoroughly probe energy regions above
10.5MeV [Gorres et al., 1995] - T, = 1.5.

Radioactive targets not suitable / practical.

Previous work by Bradfield-Smith et al,,
Sinha et al.,, Groombridge et al., using direct

Grombridge et al. 2002
Bradfield et al. 1999
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Energy levels in the “Astrophysically important” region above 8.14MeV (the a-particle
threshold) in 22Mg have been identified; key resonances, widths, spins etc... have not.




Further work published 2009 by Matic et. al.
using a 2*Mg(p,t)?2Mg transfer reaction using
Grand Raiden, RCNP, Osaka.

5 new states above the alpha-particle
threshold

No spin/parities measured but inferred from
mirror symmetry (questionable how useful
that is in this region)

Rates calculated are shown to be higher than
other reaction rates calculated previously
even within temperature region examined.
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Proton scattering on ?!Na forms a 2!Na+p system. (*!Na
proton threshold = 5.502MeV). The experimental
spectrum is equivalent to level scheme in normal
kinematics.

Level scheme by Chen et al. shows several states
identified in the region of interest above the alpha-
particle threshold.

Fire 2!Na beam at polyethylene target (CH,)..

Resonances in energy range through target (range from
dE/dx): cross-section of detected protons increases:
target does the “stepping”.
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’INa interacts with target — scatters proton elastically/inelastically.
Proton detected in segmented AE-E detector: get trajectory & energy.
2INa* y-decays: TIGRESS detects 332keV y’s.

H H HPGe Detector

Beam I 1

(CH,), Target

H H Si AE-E Detector




CAD design by F Cifarelli of TRIUMF, Vancouver. Image 2 courtesy of Greg Hackman and Douglas Cline.




TIGRESS cluster and BAMBINO target ladder photos by Adam Tuff (UoY) and Greg Hackman (TRIUMF).
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Gamma-ray spectra after gating on BGOs, Timestamps, and coincidences.

Raw spectra after
— ] ; — Doppler corrections.

BGO events reject any
scattered y-ray events.
/ Time stamp on particle
and y-ray events

A
included
| d Addback now included
for single and multiple
/events. Si ring & sector
. . L~—-“‘*‘"“ gates on proton events
0 100 200 300 400 500 600
E, (keV) now accounted allows

further b/g reduction.
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Small energy corrections for Si detector dead layer & Al doping (Simulated in SRIM &
TRIM) — compared to energy variation as function of angle in calibration data. Dead
layer found to be within manufacture tolerances.
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Proton spectra gated on AE-E.

Spectrum includes a proton
background (due to fusion
evaporation with carbon in target).

Similar to inelastic events, gate on y—
ray events associated with fusion
events, scaled produces a
background spectra which can be
removed from the spectra.




Elastic (a) & inelastic (b) proton spectra
(c.m. energy) — run at 2.85MeV/u.

No resonance in spectra.

Software gate allows isolation of coincidence
events with 332keV gamma-rays.

Black: Raw spectrum gated on proton events.
Blue: Inelastic proton events gated on
gamma-ray events.

Red: Inelastic events corrected into c.m.
Frame.
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Examples of measured angular
distributions as a function of ring
number (increasing lab angle /
decreasing cm angle) over resonances.

Both resonances (top resonance @
3.054 MeV c.m., bottom @ 3.191 MeV
c.m.) display very different distributions.

Indicates these states are likely to be of
differing spin-parities.




Resonance simulation
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Resonance simulation
comprised of six components:
- Coulomb / Rutherford

- Resonance (BW)

- Hard sphere corrections (x2)
- Interference terms (x2)




Differential cross-section (mb/sr)
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do / dQ (mbar)

Simulated distribution
across resonances (cross-
sections are completely
arbitrary here).

60

50

Positive and negative parity
states / spins display
differing distributions.

40

30

Should be able to
" . , | , | | | [ determine resonance parity
9 & 2 w2 4 at least from distributions
(work ongoing).




Determination of resonance strengths — comprised of two components — statistical
spin factor and width ratio (along with energy-dependence):

2.] + 1 ~ \ I'h'lill/
: (14 019)—
(2Jy +1)(2J5+ 1) =

.~

Wt

Spin assignment important two fold here:
1) Statistical spin factor weighting.
2) Alpha particle widths — as these are much smaller than the proton widths for
the direct reaction (*8Ne(a,p) 2!Na) they dominate this component.
- this goes as penetrability (very sensitive) — therefore calculation of this
very dependent on orbital angular momentum.
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Four resonances observed
Inelastic branch can be separated but appears to be small (much smaller than earlier

(a,p) studies - why?)

Matching resonance angular distributions to obtain spin-parity assignments.
Angular distributions for inelastic channels (not sure how to treat)
Determine key states.

Compute revised reaction rates for the astrophysical scenario.
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A study of breakout from the Hot-CNO cycle in X-
Ray bursters using inelastic proton scattering of

21Na in inverse kinematics

Ring Number
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Run at 3.800MeV/u
bombarding energy.

Resonance at 3.57MeV
has differing angular
distribution to the
resonance at 3.32MeV
(from 3.55MeV run).

May indicate different
spin/parity.




A study of resonant states involved in breakout from the
hot-CNO cycle using inelastic proton scattering of 2!Na in
inverse kinematics

Above the CNO cycles lie the NeNa and MgAl cycles.

Breakout from these conditions into the rp-process depend on a) stellar
temperatures and b) hydrogen densities in the environment.

Breakout from °Ne(p,y)?°Na allows bypassing of NeNa cycle via
2ONa(p,y)?tMg — as it can compete with B-decay.

Main importance of study of rp-process is nucleosynthesis. In our case, rp-
process is not important in seeding of the ISM — more important as a
competing process to HCNO in energy generation in XRBs.




A study of resonant states involved in breakout from the
hot-CNO cycle using inelastic proton scattering of 2!Na in
inverse kinematics

Inelastic proton spectra (c.m. energy) — run at 3.1MeV/u.

Peak here created by a
large gate on the y-ray

300 PRELIMINARY | spectra on the 332keV
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A study of resonant states involved in breakout from the
hot-CNO cycle using inelastic proton scattering of 2!Na in
inverse kinematics

S2 and S3 Ring and Segment IDs for Proton events in BAMBINO (E-AE Si)

SS Seg”;
IR LRLE LR AL AR LR RN AL} LLAS LIRS LR AL

2 u
13
=1
fu
7o
9
8
7
6
5
4
3
2
1
0
7) 2 20 21 22 232
0 1 2 3 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 s 6 7 8§ 9 10 1 1 1B 14 15 16
S2 Ring ID S2 Seg ID

5000

3000

=3




A study of resonant states involved in breakout from the
hot-CNO cycle using inelastic proton scattering of 2!Na in
inverse kinematics

Software developed for alpha particle calibrations of Si Detectors.

Identifies alpha particle
energy peaks using a “peak-
finder” routine - guide for
region over which a Gaussian
is fitted. calculates gain and
offsets.

Outputs parameters in ascii
format that can universally
read by other codes for
calibration of BAMBINO CD
detectors.

Identifies low statistic and
poor resolution channels.




A study of resonant states involved in breakout from the
hot-CNO cycle using inelastic proton scattering of 2!Na in

inverse kinematics
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A study of breakout from the Hot-CNO cycle in X-
Ray bursters using inelastic proton scattering of
21Na in inverse kinematics

The 8Ne(a,p) 2!Na reaction is considered to be a crucial process governing breakout
conditions from the Hot-CNO cycle in X-Ray Bursters (XRBs) under certain stellar
conditions — bypasses another breakout route via °O(a,y) °Ne at high
temperatures.

Dictates further nucleosynthesis of proton rich isotopes from the rp-process in XRB
sites, as well as energy generation in these environments.

Energy generation in explosive nuclear scenarios relatively unknown: rp-process and
Hot-CNO cycle are both competing processes — dominant reactions, cross-sections,
resonances, and properties of resonant states in these energy regions have not
been identified.




Theoretical variation of reaction
rate as a function temperature
(normalised to *0O(a,y) ) [9].

Predicts change in the Ne(a,p)
cross-section by nearly four orders
of magnitude between T, = 0.6 - 1.

Extremely sensitive to temperature
variation.

Sensitivity to density of reactants.

Expected to exceed the 1°0O(a,y)
around T, = 0.8.
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Resonance simulation
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