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Absolute values of two-particle transfer cross sections along the Sn- 
isotopic chain are calculated. They agree with measurements within 
errors and without free parameters. Within this scenario, the 
predictions concerning the absolute value of the two-particle transfer 
cross sections associated with the excitation of the pairing 
vibrational spectrum expected around the recently discovered closed 
shell nucleus 50132Sn82 and the very exotic nucleus 50100Sn50 can be 
considered quantitative, opening new perspectives in the study of 
pairing in nuclei.!
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Two particle transfer in second order DWBA
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The coupling of single-particle motion and of vibrations in 4

11Be 
produces dressed neutrons which spend only a fraction of the time in 
pure single-particle states, and which weighing differently from the 
bare neutrons lead to parity inversion. The interaction of the two 
least bound neutrons in the ground state of 4

12Be mediated by the v14 
Argonne nucleon-nucleon potential and by the exchange of surface 
vibrations of the core 10Be gives rise to a strongly correlated state, 
where the two valence neutrons are distributed over s2,p2, and d2 
configurations, resulting in the breaking of the N=8 shell closure. 
!
!
!
!
!
!
!
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Appendix A: Mean square radius of 11Li

(see e.g. Brink and Broglia, Nuclear Superfluidity, Cambridge University press, Cam-

bridge (2010) 2nd Ed.)

Making use of the relation �r2� ≈ (3/5)R2
, one can write the mean square radius of

11
Li

as

�r2�11Li ≈
3

5
R2

eff (
11

Li), (A1)

with

R2
eff (

11
Li) =

�
9

11
R2

0(
9
Li) +

2

11

�
ξ

2

�2
�

, (A2)

where

R0(
9
Li) = 2.7fm, (A3)

is the
9
Li radius (R0 ≈ r0A1/3, r0 = 1.2 fm), while ξ is the correlation length of the halo

neutron Cooper pair. A fair estimate of this quantity is provided by the relation

ξ =
�vF

2Ecorr
≈ 20fm, (A4)

in keeping with the fact that in
11

Li, (vF /c) ≈ 0.1 and Ecorr ≈ 0.5 MeV. Consequently,

�r2�1/2
11Li ≈ 3.8 fm (Reff (

11
Li) ≈ 4.9 fm), in overall agreement with the experimental value

�r2�1/2
= 3.55± 0.1 fm (Kobayashi et al. (1989) Phys. Lett. B232: 51)).

Appendix B: Centroid pigmy resonance

(Bortignon, Bracco and Broglia, Giant Resonances: Nuclear Structure at Finite

Temperatures, Harwood Academic Publishers, Amsterdam (1998))

From the dispersion relation given in Eq. (3.30) p.55, and the fact that ενk
− ενi =

ε2s1/2
− ε1p1/2

≈ 0.5 MeV (see Fig. 11.1 p. 264 Brink and Broglia (2010)), and that the

EWSR associated with the
11

Li pigmy resonance is ≈ 10% of the total Thomas-Reiche-

Kuhn sum rule one can write,

0.1
�2A

2m
=

1

κ1
[(0.5MeV)

2 − (�ωpigmy)
2
], (B1)

(�ωpigmy)
2

= (0.5MeV)
2 − 0.1

�2A

2m
κ1, (B2)
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where (see Eq.(3.51) Bortignon et. al. (1998)),

κ1 = − 5V1

A(ξ/2)2
= − 125MeV

A× 100fm2 ≈ −
1.25

A
fm−2 MeV, (B3)

the ratio in parenthesis reflecting the fact that only 2 out of 11 nucleons, slosh back and

forth in an extended configuration with little overlaps with the core nucleons.

From the above relation one obtains,

−0.1
�2A

2m
κ1 = 2.5 MeV2 = (1.6 MeV)2. (B4)

Consequently,

�ωpigmy =
√

0.52 + 1.62 MeV ≈ 1.7 MeV, (B5)

in overall agreement with the experimental findings (Zinser et al (1997), Nucl. Phys.

A619:151). It is of notice that the centroid of the pigmy resonance calculated in the RPA

with the help of a separable interaction is ≈ (0.8 MeV + 2.0 MeV)/2 ≈ 1.4 MeV (see Fig.

11.3(a) p.269, Brink and Broglia (2010)).

Appendix C: Estimate considering Self energy renormalization

The two neutrons must create the correlations that binds them together and to the core.

Self Energy renormalization (see e.g. Mahaux et al. Phys. Rep. 120(1985)287) is of the

order of

∆V � U1U2
h2

ε1 − ε2 − �ω
≈ −U1U2

h2

�ω
, (C1)

using the fact that the splitting between p1/2 and s1/2 states of 11Li is little compared to the

phonon energy. We can use as h, the coupling matrix element, the average pairing binding

constant G ≈ 22/A which in the case of 11Li is G ≈ 22/11 MeV = 2 MeV. U1 and U2 being

the occupation factors of s and p states, that we can assume being both 0.5 (More precise

calculations (see e.g. Brink and Broglia, Nuclear Superfluidity, Cambridge University press,

Cambridge (2010) 2nd Ed.) give 0.40 for s and 0.58 for p states). That gives us

�ω ≈ −U1U2
h2

∆V
≈ (0.5)2 22

0.6
MeV = 1.67 MeV (C2)
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The 10Be(t,p)12Be reaction has been studied with 15- and 17-MeV 
triton beams. At 17 MeV, angular distributions were measured for 
five low-lying states, and disorted-wave Born-approximation 
calculations were used to analyze the data. Contributions from 
10Be(g.s.)!(sd)2 and complete 1p-shell wave functions were 
investigated. Comparsion is made with (sd)2 states in 14C and 16C. 
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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Summing up the different contributions !numbers in
brackets", one obtains the spectroscopic factor #T1/2!#2
=0.57. Similarly, one obtains #T1/2+#2=0.31 !cf.
Table I". Also the spectroscopic factors associated with
11Be !Table I" were calculated following the same
scheme.
Diagonalizing the matrix shown in Fig. 2, we also obtain

the energies of the excited 0+ states in 12Be. In particular, we
obtain that the energy of the first excited state is 2.04 MeV,
to be compared with the experimental value of 2.24 MeV
[31].

We conclude that the main nuclear structure properties of
both 11Be and 12Be may be understood in terms of the self-
energy and induced interaction processes associated with the
dynamic polarization of the nuclear surface. The similarity of
NFT results with those of large shell model calculations re-
ported in Ref. [7] for 12Be and in Ref. [32] for 11Be, indicates
that a proper treatment of single particle and of collective
degrees of freedom and of their interweaving provides an
essentially complete description of the nuclear structure of
these nuclei as was already found in the case of nuclei lying
along the stability valley.
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