Neutron *sd*-shell excitations in exotic nuclei near N=8

¹A. H. Wuosmaa, ²M. Alcorta, ²B. B. Back, ²S. I. Baker, ¹S.
Bedoor, ²P. F. Bertone, ³B. A. Brown, ²J. A. Clark, ^{2,4}C. M. Deibel, ⁵P. Fallon, ⁶S. J. Freeman, ²C. R. Hoffman, ²B. P. Kay, ⁷H. Y. Lee, ^{1,2}J. C. Lighthall, ⁵A. O. Macchiavelli, ^{1,2}S. T. Marley, ²K. E. Rehm, ²J. P. Schiffer, ¹D. V. Shetty, ⁸M. Wiedeking

¹Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252, USA
 ²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
 ³Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ⁴Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
 ⁵Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ⁶Department of Physics, University of Manchester
 ⁷LANSCE-NS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
 ⁸Lawrence Livermore National Laboratory, Livermore, California 94551, USA

Evolution of $1s_{1/2}$ - $0d_{5/2}$ splitting outside N=8

Gross behavior from p-n tensor attraction/repulsion

Neutron configurations around N=8

The HELIOS approach to inverse kinematics

Producing secondary beams: "In-flight" production at ANL*

 15 C intensity ~ 1.5 X 10⁶ /sec at 8.2 MeV/u

Producing secondary beams: "In-flight" production at ANL*

¹³B intensity ~ 4 X 10⁴ /sec at 15.7 MeV/u

First HELIOS RIB results with ${}^{12}B(d,p){}^{13}B$

^{11,12}B(*d*,*p*)^{12,13}B angular distributions

Exotic behavior in ¹⁶C?

VOLUME 92, NUMBER 6

PHYSICAL REVIEW LETTERS

week ending 13 FEBRUARY 2004

Valence neutrons

Anomalously Hindered *E*2 Strength $B(E2; 2_1^+ \rightarrow 0^+)$ in ¹⁶C

N. Imai,^{1,*} H. J. Ong,² N. Aoi,¹ H. Sakurai,² K. Demichi,³ H. Kawasaki,³ H. Baba,³ Zs. Dombrádi,⁴ Z. Elekes,^{1,†}
N. Fukuda,¹ Zs. Fülöp,⁴ A. Gelberg,⁵ T. Gomi,³ H. Hasegawa,³ K. Ishikawa,⁶ H. Iwasaki,² E. Kaneko,³ S. Kanno,³ T. Kishida,¹ Y. Kondo,⁶ T. Kubo,¹ K. Kurita,³ S. Michimasa,⁷ T. Minemura,¹ M. Miura,⁶ T. Motobayashi,¹ T. Nakamura,⁶ M. Notani,⁷ T. K. Onishi,² A. Saito,³ S. Shimoura,⁷ T. Sugimoto,⁶ M. K. Suzuki,² E. Takeshita,³ S. Takeuchi,¹ M. Tamaki,⁷ K. Yamada,³ K. Yoneda,^{1,‡} H. Watanabe,¹ and M. Ishihara¹

Physics Letters B 586 (2004) 34–40 Decoupling of valence neutrons from the core in ¹⁶C

Z. Elekes^{a,1}, Zs. Dombrádi^b, A. Krasznahorkay^b, H. Baba^c, M. Csatlós^b, L. Csige^b, N. Fukuda^a, Zs. Fülöp^b, Z. Gácsi^b, J. Gulyás^b, N. Iwasa^d, H. Kinugawa^c, S. Kubono^c, M. Kurokawa^c, X. Liu^c, S. Michimasa^c, T. Minemura^c, T. Motobayashi^a, A. Ozawa^a, A. Saito^c, S. Shimoura^e, S. Takeuchi^a, I. Tanihata^a, P. Thirolf^f, Y. Yanagisawa^a, K. Yoshida^a

PRL 100, 152501 (2008)	PHYSICAL REVIEW LETTERS	week ending 18 APRIL 2008

Lifetime Measurement of the First Excited 2⁺ State in ¹⁶C

M. Wiedeking, P. Fallon, A. O. Macchiavelli, J. Gibelin, M. S. Basunia, R. M. Clark, M. Cromaz, M.-A. Deleplanque, S. Gros, H. B. Jeppesen, P. T. Lake, I.-Y. Lee, L. G. Moretto, J. Pavan, L. Phair, and E. Rodriguez-Vietiez Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

> L. A. Bernstein, D. L. Bleuel, J. T. Burke, S. R. Lesher, B. F. Lyles, and N. D. Scielzo Lawrence Livermore National Laboratory, Livermore, California 94550, USA

(Received 20 November 2007; published 16 April 2008)

No hindrance, and no exotic behavior.

Study with ¹⁵C(d,p)¹⁶C

¹⁵C(*d*,*p*)¹⁶C angular distributions

Curves are DWBA calculations with various optical-model potentials.

Spectroscopic factors obtained from the average over four sets of OMP.

Relative uncertainties in SF dominated by OMP variations Absolute uncertainty (~30%) from beam-integration uncertainty

PRL 105, 132501 (2010)

Preliminary excitation-energy spectrum

<u>Preliminary</u>

¹³B(*d*,*p*)¹⁴B angular distributions

> Blue: L=0 Red: L=2 Violet: L=0 + L=2

2⁻(0.00): $S_0=.71$ $S_2=.17$ 1⁻(0.65): $S_0=0.96$ $S_2=.06$ 3⁻(1.38): $S_2=1.00$ (fixed) 4⁻(2.08): $S_2=1.00$

OMPs fit 30 MeV d+¹²C, p+^{12,13}C elastic scattering

Summary

- HELIOS provides a new approach to studying reactions in inverse kinematics
- Alleviates problems with light particle identification and gives improved excitationenergy resolution and straightforward determination of CM quantities
- Around N=8, (d,p) nicely probes the evolution of the $1s_{1/2}$ - $0d_{5/2}$ orbitals and the p-n/n-n residual interactions
- ¹⁴B(1⁻) (S_n=.319 MeV) is mostly *s*-wave, so is as good or better a halo state than ¹¹Li_{g.s.} or ¹¹Be_{g.s.}
- Structure aspects seem reasonably well in hand, BUT: we still worry about DWBA and weakly (or un-) bound s states.

Acknowledgements

The HELIOS Collaboration

S. Bedoor, J. C. Lighthall, S. T. Marley, D. Shetty, J. R. Winkelbauer (SULI student), A. H. Wuosmaa

Western Michigan University

B. B. Back, S. Baker, C. M. Deibel, C. R. Hoffman, B. Kay, H. Y. Lee, C. J. Lister, P. Mueller, K.E. Rehm, J. P. Schiffer, K. Teh, A. Vann (SULI student)

Argonne National Laboratory

S. J. Freeman *University of Manchester*

Work supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract numbers DE-FG02-04ER41320 (WMU) and DE-AC02-06CH11357 (ANL)

Also, special thanks to: N. Antler, Z. Grelewicz, S. Heimsath, J. Rohrer, J. Snyder

Advantages to the HELIOS approach for (*d*,*p*)

Empirical $v(sd)^2$ residual interaction for O^+

 $|0_{1}^{+} \rangle = \alpha |(ls_{1/2})^{2} \rangle + \beta |(0d_{5/2})^{2} \rangle \\ |0_{2}^{+} \rangle = -\beta |(ls_{1/2})^{2} \rangle + \alpha |(0d_{5/2})^{2} \rangle$

 $\alpha = \sqrt{S(0_1^+) \times [J_f]/[J_i]} = 0.55$ $\beta = \sqrt{S(0_2^+) \times [J_f]/[J_i]} = 0.84$ $\begin{bmatrix} E_{1/2}^0 + \delta_{1/2;1/2} & \delta_{1/2;5/2} \\ \delta_{1/2;5/2} & E_{5/2}^0 + \delta_{5/2;5/2} \end{bmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = E_x \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

Single-particle energies E^0 from ¹⁵C.

	$(j_1 j_2, j'_1 j'_2)$		
$< j_1 j_2 v j_1' j_2' >$	$(1/2 \ 1/2, 1/2 \ 1/2)$	$(5/2 \ 5/2, 5/2 \ 5/2)$	$(1/2 \ 1/2, 5/2 \ 5/2)$
Exp	-0.92(28)	-3.60(28)	-1.39(12)
LSF	-1.54	-2.78	-1.72
WBP	-2.12	-2.82	-1.32

PRL 105, 132501 (2010)

Recoil particle identification

$1s_{1/2}$ and $0d_{5/2}$ neutron form factors

R. Huby, J. Phys. G 11, 931 (1985)

Zwieglinski, Benenson, Robertson, Coker – NP A315, 124 (1979)

(d,p) momentum mismatch at 0°

(*d*,*p*) momentum mismatch at 0° (A_{tgt}=132)

 $\Delta q(1\hbar)^{30}$ MeV/c

Spectrometer completed in August 2008

²⁸Si(d,p)²⁹Si Excitation-energy spectrum

Proton beam impurity: p-d elastics

E vs Z, data and Monte-Carlo

Ab initio nuclear structure simulations: The speculative ¹⁴F nucleus

P. Maris,¹ A. M. Shirokov,^{1,2,*} and J. P. Vary¹

FIG. 3. (Color online) Negative-parity ¹⁴B spectrum obtained with JISP16 at fixed $\hbar\Omega = 25$ MeV in successive basis spaces and extrapolated to infinite basis space using extrapolation B. Experimental (exp.) data are taken from Ref. [13].

Simple considerations for ${}^{12}B(d,p){}^{13}B$

+ parity states are p-h excitations out of the p shell

(*d*,*p*) samples $v(1s_{1/2})$ content of states in ¹⁶C

(d,p) populates single-neutron states in ¹⁴B

This you have seen...

But maybe not this...

What's in your beam?

