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HiRA Scientific Results (2005-2011)

• Mass of rp-process waiting point nucleus 69Br  (Andy Rogers) 

• Transfer reactions: 34,46Ar(p,d), 56Ni(p,d), (d, 3He), 84Se(p,d)                  

(Jenny Lee, Alisher Sanetullaev, Tilak Ghosh)

• Proton knockout reactions  (Danel Bazin)

• Particle unbound state: 2 p decay in 10C & 4p+α decay in 9C.         

– (Bob Charity & Lee Sobotka)
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• Spectra and two particle correlations  (Micha Kilburn et al)
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First HiRA exp.: rp- process nucleo-synthesis

Thesis: Andy Roger (2009)
Phys. Rev. Lett. 106, 252503 (2011) 

In a binary system including a 

neutron star, hydrogen 

accreted from companion star 

ignites and burns via rp

process leading to X-ray burst.
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68Se waiting point

A.M. Rogers  (2009)

• Two proton capture through 69Br depends exponentially on proton 

separation energy Sp.

• Two proton capture through 69Br depends exponentially on proton 

separation energy Sp.



Experimental Technique

7070SeSe→2n+→2n+6969Br→p+Br→p+6868SeSe

In COM System:  Erel=Sp

Proton

MCP’s
69Br

Direct Measurement of ground-state 
one-proton decay from 69Br

Andrew M. Rogers (2009 thesis)

Target

70Se Beam

1.1. HiHigh gh RResolution esolution AArrayrray

θ

Φ To S800
Spectrograph

68Se P,E,Φ

2.2. S800 S800 SpectrographSpectrograph

Primary DevicesPrimary Devices

3.3. MMicro icro CChannel hannel PPlateslates

MCP’s
69Br

� Complete Kinematics

� Invariant-mass method               
���� Particle-decaying State



Experimental Setup

Separation energy is determined by calculating the decay energy 

Erel in the p+68Se C.M. system, where: Sp = - Erel

Separation energy is determined by calculating the decay energy 

Erel in the p+68Se C.M. system, where: Sp = - Erel



+ +

Detectors and Calibrations

68Se

7070SeSe→2n+→2n+6969Br→p+Br→p+6868SeSe

Beam Tracking

Protons Heavy Products

PID using ∆E-ToF method.
Good isotopic separation.
Measurement of E, P, and θ

PID using ∆E-E
Si Resolution:   ≈ 70 keV FMHM
CsI Resolution: ≈ 800 keVBeam Resolution ~ 1mm

p



Decay spectrum in the p+ Se systemDecay spectrum in the p+68Se system

A.M. Rogers et al.,

Phys. Rev. Lett. 106, 

252503 (2011) 

• The peak corresponds to the proton separation energy of 69Br, assuming 

the structure of its mirror, 69Se.   Sp=-785±27 keV

• The large (negative) Sp � rp-process probably terminates at 68Se



Nuclear Structure Study with Transfer Reactions

Transfer Reactions:

� Determine masses and excitation energies from complete kinematics reactions

� Obtain spectroscopic information such as ℓ-values from angular distributions

� Extract Spectroscopic Factors � single-particle strengths & correlation effects

Establish a systematic way to extract consistent SF’s 

using 50 year of transfer reaction data

correlated motions 

of valence nucleons

Large Basis Shell Model

Residual interactions
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Some correlations missing in the 
interactions (shell model) ? 

How much ? What is the Asymmetry 

Dependence of nucleon correlations?

using 50 year of transfer reaction data

ADWA



Transfer Experiment SetupTransfer Experiment Setup

Beam

MCP's

θ

d or 33HeHe
A + A + pp→d→d + B+ B

A + dA + d→→33He + BHe + B

Target

Φ

To S800

Spectrograph

residue

P,E,Φ

2007 campaign

p(34,36,46Ar, d)33,35,45Ar ;  p(56Ni, d)55Ni; E/A~35 MeV

2010 campaign

p(86Kr, d)85Kr; p(84Se, d)83Se; E/A~40MeV

p(56Ni, d)55Ni; p(56Ni, d)55Ni; d(56Ni, 3He)55Co; E/A~80MeV



First Transfer Experiment First Transfer Experiment 
with with HiRAHiRA

S800   

Target 
Chamber

Focal Plane

55Ni

p
d t

3He 4He

HiRA

2007 campaign

p(34,36,46Ar, d)33,35,45Ar;  E/A~35 (Jenny Lee 2010)

p(56Ni, d)55Ni;  E/A~37 MeV; (Alisher Santullanev, 2011)

HiRAHiRA: Excellent Isotopes Identification: Excellent Isotopes Identification



Single Particle States in 56Ni
Magic 
number

• 56Ni is the end product in many 

astrophysical models.

• First double magic nucleus that is 

unstable ! 

N=20

N=28

(Alisher Santullanev, 2011)

Nuclear Structure Study with (p,d) reactions

unstable ! 

• How good is 56Ni a double magic 

nucleus ?  

• 55Ni � No spectroscopic 

information about the first excited 

state at 2.09 MeV.           

N=2

N=8



Kinematics and Q-Value 

7/2-

3/2-

p(56Ni, d)55Ni; E/A~37 MeV

After MCP corrections

g.s.2.089 MeV

3.185 MeV

g.s.
2.089 MeV

3.185 MeV



2010 HiRA campaign

E/A=37 E/A=37 MeVMeV
5656Ni + Ni + pp→d→d + + 5555NiNi

E/A=80 E/A=80 MeVMeV
5656Ni + Ni + pp→d→d + + 5555NiNi

Evolution of Neutron hole states 

in N=50 closed shells

Rutgers +VECC+ MSU

E/A=45 E/A=45 MeVMeV
8686Kr Kr + + p p → d → d + + 8585KrKr
8484Se+ p Se+ p → d + → d + 8383SeSe

Comparison of Spectroscopic 

Factors from (p,d) and Knockout

VECC + MSU collaboration

E/A=80 E/A=80 MeVMeV
5656Ni Ni + + pp→d→d + + 5555NiNi

5656Ni+ dNi+ d→→33He + He + 5555CoCo

Comparison of proton and neutron 

spectroscopic factors in 56Ni

VECC + MSU collaboration



Neutron correlations in Neutron correlations in ArAr isotonesisotones

(add more neutrons) (add more neutrons) 

Asymmetry Dependence of Shell Occupancies ?
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Thesis: J. Lee, 2010

p(34,36,46Ar,d) at 33 MeV/u

Neutron correlations in Neutron correlations in ArAr isotonesisotones

(add more neutrons) (add more neutrons) 

Asymmetry Dependence of Shell Occupancies ?
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J. Lee et al., Phys. Rev. Lett 104, 112701 (2010)
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Neutron correlations in N=28 isotonesNeutron correlations in N=28 isotones

(add more protons) (add more protons) 

Neutron correlations in Neutron correlations in ArAr isotonesisotones

(add more neutrons) (add more neutrons) 

Asymmetry Dependence of Shell Occupancies ?

48Ca
54Fe

56Ni
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J. Lee et al., Phys. Rev. Lett 104, 112701 (2010)

Transfer Reactions:

Weak Asymmetry dependence of 

nucleon correlations 

∆S=Sn-Sp (MeV)
Less neutron

46Ar

48Ca
50Ti

52Cr

54Fe

Shell Model: M. Horoi

Effects of NeutronEffects of Neutron--Proton pairing Correlations ?Proton pairing Correlations ?

HiRA Data: p(46Ar,d), p(56Ni,d)
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9Be (target)

9C (beam) 8B (S800)

Proton 

(HiRA)

Reaction Mechanism of Knockout Reactions

σtot = σstr + σdiff

Reaction Mechanisms:

• Stripping (inelastic breakup/absorption)

• Diffraction (elastic)

Diffractive 

component

• Diffraction (elastic)

D. Bazin et al, Phys. Rev. Lett. 102, 232501 (2009) 

Results agree with Eikonal model

���� Loosely-bound nucleon systems

Stripping component



1. The excitation of an unbound species can be reconstructed 

from the relative energy of the  decay fragments.

8C�α+p+p+p+p

E*(8C)   = ETKE (α+4p) – Qdecay

1. The excitation of an unbound species can be reconstructed 

from the relative energy of the  decay fragments.

8C�α+p+p+p+p

E*(8C)   = ETKE (α+4p) – Qdecay

Overview of  8C and 6Be decays

2. If 8C decays via        8C� [6Be] +2p�[α+2p]+2p

there will be two protons from the first step and two from the second.

How to prove experimentally ?

���� Evidence of 6Be decay from α+2p in detected α+p+p+p+p event 

E*(6Be) = ETKE (α+2p) – Qdecay

� Reference data needed:

6Be ���� αααα+p+p
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Continuum Decay Spectroscopy
16O (150 MeV/u) ���� 7Be (70 MeV/u) ���� 6Be ���� αααα+p+p
16O (150 MeV/u) ���� 9C (70 MeV/u) ���� 8C  ���� αααα+ p+p + p+p

January 2010

WU: R. J. Charity, L. G. Sobotka, J. Elson, R. Shane        

NSCL: Bill Lynch, Betty Tsang, 

Zibi Chajecki, Daniel Coupland, 

Tilak Ghosh, Jenny Lee,  

Alisher Sanetullaev, Jack 

Winkelbauer, Mike Youngs

WMU, VECC, Rutgers 

University



α-p-p

from 

α-p-p

from 

α-p-p-p-p

Peak / bkg

1  /  5

8C� [6Be] +2p�[α+2p]+2p

8C decay –1 out of 6.

6 ways to choose two protons 

from a set of four protons : 

6= 4!/(2!2!).

αααα

p
p p

p

α-p-p-p-p

from 

9C beam

7Be beam

6Be is the intermediate, i.e.

8C ���� [6Be] +2p ���� [αααα +2p] +2p

T = 2

T = 1

T = 0

Excitation energy (MeV)



Physics with HiRA Summary – Present and Future

(Highly configurable)

• Mass of rp-process waiting point nucleus 69Br (Andy Rogers) – 73Rb

• Transfer reactions: (J. Lee, Alisher Sanetullaev, Tilak Ghosh)

– 34,46Ar(p,d) at E/A=70 MeV;  (d,p) to investigate particle states

• Proton knockout reactions (D. Bazin) – 1p & 2p knockout from 28Mg

• Particle unbound state. 2 p decay in 10C & 4p+α decay in 8C.          

(Bob Charity & Lee Sobotka) – 8B, 12N, 16F
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