Direct Reactions and Decay Spectroscopy using the MSU High Resolution Array

HiRA core collaboration

Bill Lynch, Betty Tsang, Zibi Chajecki, Daniel Coupland, Tilak Ghosh, Rachel Hodges, Micha Kilburn, Jenny Lee, Fei Lu, Andy Rogers, Alisher Sanetullaev, Jack Winkelbauer, Mike Youngs (Mark Wallace, Frank Delaunay, Marc VanGoethem)

WU in St. Louis Bob Charity, Jon Elson, Lee Sobotka
Indiana University Romualdo deSouza, Sylvie Hudan
INFN, Milan Arialdo Moroni
Western Michigan University Mike Famiano

ORNL Dan Shapira

 inSt.Louis

1920 Channels \rightarrow ASIC readout 16 channels per chip

HiRA Scientific Results (2005-2011)

- Mass of $r p$-process waiting point nucleus ${ }^{69} \mathrm{Br}$ (Andy Rogers)
- Transfer reactions: ${ }^{34,46} \mathrm{Ar}(\mathrm{p}, \mathrm{d}),{ }^{56} \mathrm{Ni}(\mathrm{p}, \mathrm{d}),\left(\mathrm{d},{ }^{3} \mathrm{He}\right),{ }^{84} \mathrm{Se}(\mathrm{p}, \mathrm{d})$ (Jenny Lee, Alisher Sanetullaev, Tilak Ghosh)
- Proton knockout reactions (Danel Bazin)
- Particle unbound state: 2 p decay in ${ }^{10} \mathrm{C} \& 4 \mathrm{p}+\alpha$ decay in ${ }^{9} \mathrm{C}$.
- (Bob Charity \& Lee Sobotka)
- Spectra and two particle correlations (Micha Kilburn et al)

First HiRA exp.: rp- process nucleo-synthesis

${ }^{68}$ Se waiting point

- $\mathrm{T}_{1 / 2}=35.5 \mathrm{~s}$ and ${ }^{69} \mathrm{Br}$ is unbound.
- Bypass of waiting point via sequential 2 p -capture to ${ }^{70} \mathrm{Kr}$.
- S_{p} determines proton-capture and (γ, p) processes.

- Two proton capture through ${ }^{69} \mathrm{Br}$ depends exponentially on proton separation energy S_{p}.

Experimental Technique

Direct Measurement of ground-state one-proton decay from ${ }^{69} \mathrm{Br}$

Experimental Setup

Separation energy is determined by calculating the decay energy $\mathrm{E}_{\text {rel }}$ in the $\mathrm{p}+{ }^{68} \mathrm{Se}$ C.M. system, where: $\mathrm{S}_{\mathrm{p}}=-\mathrm{E}_{\text {rel }}$

Detectors and Calibrations

Beam Tracking
Beam Resolution ~ 1mm

PID using $\triangle \mathrm{E}-\mathrm{E}$
Si Resolution: $\approx 70 \mathrm{keV}$ FMHM
CsI Resolution: $\approx \mathbf{8 0 0} \mathbf{~ k e V}$

$$
{ }^{70} \mathrm{Se} \rightarrow \mathbf{2 n}+{ }^{69} \mathrm{Br} \rightarrow \mathbf{p}+{ }^{68} \mathrm{Se}
$$

Heavy Products

PID using $\Delta \mathrm{E}$-ToF method.
Good isotopic separation.
Measurement of \mathbf{E}, \mathbf{P}, and θ

Decay spectrum in the $\mathrm{p}+{ }^{68}$ Se system

- The peak corresponds to the proton separation energy of ${ }^{69} \mathbf{B r}$, assuming the structure of its mirror, ${ }^{69} \mathrm{Se} . \mathrm{S}_{\mathrm{p}}=\mathbf{- 7 8 5} \pm \mathbf{2 7} \mathbf{~ k e V}$
- The large (negative) $S_{p} \rightarrow$ rp-process probably terminates at ${ }^{68} \mathrm{Se}$

Nuclear Structure Study with Transfer Reactions

Transfer Reactions:

\checkmark Determine masses and excitation energies from complete kinematics reactions
\checkmark Obtain spectroscopic information such as ℓ-values from angular distributions
\checkmark Extract Spectroscopic Factors \rightarrow single-particle strengths \& correlation effects

Establish a systematic way to extract consistent SF's using 50 year of transfer reaction data

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {EXP }}=S F_{E X P}\left(\frac{d \sigma}{d \Omega}\right)_{\text {Theo }} \sim \text { ADWA }
$$

$S F_{\text {exp }} / S F_{S M}<1 \quad \begin{aligned} & \text { Some correlations missing in the } \\ & \text { interactions (shell model)? }\end{aligned}$
Large Basis Shell Model
$H=\underbrace{\sum_{i}^{\left(\frac{\vec{p}_{i}^{2}}{2 m}+U\left(r_{i}\right)\right)}}+\underbrace{\sum_{i<j} V_{N N}\left(\vec{r}_{i}-\vec{r}_{j}\right)-\sum_{i} U\left(r_{i}\right)}$
How much? What is the Asymmetry Dependence of nucleon correlations?

[^0]
Transfer Experiment Setup

$$
\begin{gathered}
A+p \rightarrow d+B \\
A+d \rightarrow{ }^{3} \mathrm{He}+B
\end{gathered}
$$

d or ${ }^{3} \mathrm{He}$

2007 campaign
$\left.p\left({ }^{34,36,46} \mathrm{Ar}, \mathrm{d}\right)\right)^{33,35,45} \mathrm{Ar} ; \mathrm{p}\left({ }^{56} \mathrm{Ni}, \mathrm{d} d{ }^{55} \mathrm{Ni} ; \mathrm{E} / \mathrm{A} \sim 35 \mathrm{MeV}\right.$
2010 campaign
$p\left({ }^{86} \mathrm{Kr}, \mathrm{d}\right){ }^{85} \mathrm{Kr} ; \mathrm{p}\left({ }^{84} \mathrm{Se}, \mathrm{d}\right){ }^{83} \mathrm{Se} ; \mathrm{E} / \mathrm{A} \sim 40 \mathrm{MeV}$
$p\left({ }^{56} \mathrm{Ni}, \mathrm{d}\right){ }^{55} \mathrm{Ni} ; \mathrm{p}\left({ }^{56} \mathrm{Ni}, \mathrm{d}\right){ }^{55} \mathrm{Ni} ; \mathrm{d}\left({ }^{56} \mathrm{Ni},{ }^{3} \mathrm{He}\right)^{55} \mathrm{Co} ; \mathrm{E} / \mathrm{A} \sim 80 \mathrm{MeV}$

Nuclear Structure Study with (p,d) reactions

(Alisher Santullanev, 2011)

		Magic number
If $\bullet-\bullet \bullet \bullet \bullet \bullet-\bullet$	72	N=28
${ }_{2 \mathrm{~s}}^{1 \mathrm{~d}}=\left\{\begin{array}{c} \bullet-\bullet- \\ \bullet-\bullet-0- \end{array}\right.$	$3 / 2$ $1 / 2$ $5 / 2$	$\mathrm{N}=20$
$1_{p}-C_{\bullet \bullet \bullet}$		$\mathrm{N}=8$
1s	1/2	$\mathrm{N}=2$

Single Particle States in ${ }^{56} \mathrm{Ni}$

- ${ }^{56} \mathrm{Ni}$ is the end product in many astrophysical models.
- First double magic nucleus that is unstable!
- How good is ${ }^{56} \mathrm{Ni}$ a double magic nucleus?
- ${ }^{55} \mathrm{Ni} \rightarrow$ No spectroscopic information about the first excited state at 2.09 MeV .

Kinematics and Q-Value

	$\mathrm{SF}(\mathrm{ex})$	$\mathrm{SF}(\mathbf{S M})$
g.s.	7.0 ± 0.7	6.78
2.09 MeV (unknown)	0.13 ± 0.01	0.18

Evolution of Neutron hole states in $\mathbf{N}=50$ closed shells Rutgers + VECC+ MSU

$$
\begin{gathered}
\mathrm{E} / \mathrm{A}=45 \mathrm{MeV} \\
{ }^{86} \mathrm{Kr}+\mathrm{p} \rightarrow \mathrm{~d}+{ }^{85} \mathrm{Kr} \\
{ }^{84} \mathrm{Se}+\mathrm{p} \rightarrow \mathrm{~d}+{ }^{83} \mathrm{Se}
\end{gathered}
$$

Comparison of Spectroscopic Factors from (p,d) and Knockout

VECC + MSU collaboration

$$
\begin{gathered}
\mathrm{E} / \mathrm{A}=37 \mathrm{MeV} \\
{ }^{56} \mathrm{Ni}+\mathrm{p} \rightarrow \mathrm{~d}+{ }^{55} \mathrm{Ni} \\
\mathrm{E} / \mathrm{A}=80 \mathrm{MeV} \\
{ }^{56} \mathrm{Ni}+\mathrm{p} \rightarrow \mathrm{~d}+{ }^{55} \mathrm{Ni}
\end{gathered}
$$

Comparison of proton and neutron spectroscopic factors in ${ }^{56} \mathrm{Ni}$

VECC + MSU collaboration

$$
\begin{gathered}
\mathrm{E} / \mathrm{A}=80 \mathrm{MeV} \\
{ }^{56} \mathrm{Ni}+\mathrm{p} \rightarrow \mathrm{~d}+{ }^{55} \mathrm{Ni} \\
{ }^{56} \mathrm{Ni}+\mathrm{d} \rightarrow{ }^{3} \mathrm{He}+{ }^{55} \mathrm{Co}
\end{gathered}
$$

Asymmetry Dependence of Shell Occupancies?

Neutron correlations in Ar isotones

Asymmetry Dependence of Shell Occupancies?

Neutron correlations in Ar isotones

J. Lee et al., Phys. Rev. Lett 104, 112701 (2010)

Transfer Reactions:

Weak Asymmetry dependence of nucleon correlations

Asymmetry Dependence of Shell Occupancies?

Neutron correlations in Ar isotones

Neutron correlations in $\mathbf{N}=\mathbf{2 8}$ isotones (add more protons)

HiRA Data: $\mathbf{p}\left({ }^{46} \mathrm{Ar}, \mathrm{d}\right), \mathbf{p}\left({ }^{\mathbf{5}} \mathrm{Ni}, \mathrm{d}\right)$
Effects of Neutron-Proton pairing Correlations?

Reaction Mechanism of Knockout Reactions

Results agree with Eikonal model
\rightarrow Loosely-bound nucleon systems

[^1]
Overview of ${ }^{8} \mathrm{C}$ and ${ }^{6} \mathrm{Be}$ decays

1. The excitation of an unbound species can be reconstructed from the relative energy of the decay fragments.

$$
\begin{gathered}
{ }^{8} \mathrm{C} \rightarrow \alpha+p+p+p+p \\
\mathrm{E}^{*}\left({ }^{8} \mathrm{C}\right)=\mathrm{E}_{\text {TKE }}(\alpha+4 \mathrm{p})-\mathrm{Q}_{\text {decay }}
\end{gathered}
$$

2. If ${ }^{8} \mathrm{C}$ decays via $\quad{ }^{8} \mathrm{C} \rightarrow\left[{ }^{6} \mathrm{Be}\right]+2 \mathrm{p} \rightarrow[\alpha+2 \mathrm{p}]+2 \mathrm{p}$ there will be two protons from the first step and two from the second.
How to prove experimentally?
\rightarrow Evidence of ${ }^{6}$ Be decay from $\alpha+2 p$ in detected $\alpha+p+p+p+p$ event

$$
\mathrm{E}^{*}\left({ }^{6} \mathrm{Be}\right)=\mathrm{E}_{\mathrm{TKE}}(\alpha+2 \mathrm{p})-\mathrm{Q}_{\text {decay }}
$$

\rightarrow Reference data needed:

$$
{ }^{6} \mathbf{B e} \rightarrow \alpha+\mathrm{p}+\mathrm{p}
$$

Continuum Decay Spectroscopy	
${ }^{16} \mathrm{O}(150 \mathrm{MeV} / \mathbf{u})$	$\rightarrow{ }^{7} \mathrm{Be}(70 \mathrm{MeV} / \mathbf{u}) \rightarrow{ }^{6} \mathrm{Be} \rightarrow \alpha+\mathrm{p}+\mathrm{p}$
${ }^{16} \mathrm{O}(150 \mathrm{MeV} / \mathbf{u})$	$\rightarrow{ }^{9} \mathrm{C}(70 \mathrm{MeV} / \mathbf{u}) \rightarrow{ }^{8} \mathrm{C} \rightarrow \alpha+\mathrm{p}+\mathrm{p}+\mathrm{p}+\mathrm{p}$

January 2010

WU: R. J. Charity, L. G. Sobotka, J. Elson, R. Shane NSCL: Bill Lynch, Betty Tsang, Zibi Chajecki, Daniel Coupland, Tilak Ghosh, Jenny Lee, Alisher Sanetullaev, Jack Winkelbauer, Mike Youngs WMU, VECC, Rutgers University

Physics with HiRA Summary - Present and Future (Highly configurable)

- Mass of rp-process waiting point nucleus ${ }^{69} \mathrm{Br}$ (Andy Rogers) - ${ }^{73} \mathrm{Rb}$
- Transfer reactions: (J. Lee, Alisher Sanetullaev, Tilak Ghosh)
- ${ }^{34,46} \mathrm{Ar}(\mathrm{p}, \mathrm{d})$ at $\mathrm{E} / \mathrm{A}=70 \mathrm{MeV}$; (d,p) to investigate particle states
- Proton knockout reactions (D. Bazin) - $1 \mathrm{p} \& 2 \mathrm{p}$ knockout from ${ }^{28} \mathrm{Mg}$
- Particle unbound state. 2 p decay in ${ }^{10} \mathrm{C} \& 4 \mathrm{p}+\alpha$ decay in ${ }^{8} \mathrm{C}$.
(Bob Charity \& Lee Sobotka) - ${ }^{8} \mathrm{~B},{ }^{12} \mathrm{~N},{ }^{16} \mathrm{~F}$
- Spectra and two particle correlations (Micha Kilburn et al)

[^0]: Mean field Residual interactions

[^1]: D. Bazin et al, Phys. Rev. Lett. 102, 232501 (2009)

