Multi-nucleon transfers using two-neutron halo ${ }^{6} \mathrm{He}$ on ${ }^{12} \mathrm{C}$ at 30 MeV using the SHARC and TIGRESS arrays at TRIUMF ISAC-II

Fred SARAZIN, Duane SMALLEY
Colorado School of Mines

Outline

- Motivation
- SHARC + TIGRESS @ ISAC-II
- Data analysis
- Elastic / inelastic scattering
- ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right)$
- ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{8} \mathrm{Be}\right)$
- Conclusion and outlook

$\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right)$: an alternate surrogate reaction for $2 \mathrm{n}-$

- (t,p):
- Used very successfully in the past
- Tritium beams now hard to come by
- State-of-the-art detectors at RIB facilities
- Tritium (implanted) target challenging
- $\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right)$:
- A few RIB facilities now have intense ${ }^{6} \mathrm{He}$ beam ($>10^{7} \mathrm{pps}$) in the few A.MeV range
- Most intense ${ }^{6} \mathrm{He}$ beams likely at SPIRAL and ISAC
- Potentially more favorable than (t,p)
- Large Q-value: higher excited states, more direct?
- ${ }^{6} \mathrm{He} \mathrm{S}_{2 \mathrm{n}}=1.867 \mathrm{MeV}$
- Triton $\mathrm{S}_{2 \mathrm{n}}=6.257 \mathrm{MeV}$
- Influence of the ${ }^{6} \mathrm{He}$ halo / study of the 2 n -correlation
- Disadvantages:
- stable (or long-lived) target
- More challenging from the reaction theory standpoint

${ }^{65} \mathrm{Cu}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right)$ @ SPIRAL:

$\sigma_{(6 \mathrm{He}, 4 \mathrm{He})}=10 \sigma_{(6 \mathrm{He}, 5 \mathrm{He})}$

Dineutron configuration:

Favors 2n-transfer

Cigar-like configuration:

Favors 1n-transfer

From A.Chatterjee et al., Phys. Rev. Lett. 101 (2008) 032701

Benchmark experiment: ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right){ }^{14} \mathrm{C}^{*}$

From M.Milin et al., Nucl. Phys. A730 (2004) 285

Fred Sarazin (fsarazin@mines.edu)
Physics Department, Colorado School of Mines
${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{6} \mathrm{He}\right)$ elastic / inelastic
Data: from M.Milin et al., Nucl. Phys. A730 (2004) 285 Fit: from I.Boztosun et al., Phys. Rev. C 77 (2008) $0646081{ }_{10}$

- First minimum not covered by data
- No good fit of the inelastic scattering
- CCBA calculation: magnitude, but still not shape
- Need more information

TRIUMF

Fred Sarazin (fsarazin@mines.edu)
Physics Department, Colorado School of Mines
DREB March 2012

Target:

- $200 \mu \mathrm{~g} / \mathrm{cm}^{2}{ }^{12} \mathrm{C}(\sim 1 \mu \mathrm{~m})$

SHARC configuration:

- Upstream, only E
- $4 \times 1 \mathrm{~mm}$ BB11 box
- $1 \times 1 \mathrm{~mm}$ QQQ2 CD
- Downstream
- $4 \times 140 \mu \mathrm{~m}$ BB1 box (DE)
- $4 \times 1 \mathrm{~mm}$ pad (E)
- $3 \times 80 \mu \mathrm{~m}$ QQQ2 CD (DE)
- $1 \times 45 \mu \mathrm{~m}$ QQQ1 CD (DE)
- $4 \times 1 \mathrm{~mm}$ QQQ1 pad
- DoCD3 not working

SHARC angular resolution:

- DCD / UCD ~ 1.5°
- DBx / UBx ~0.5

0
${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right){ }^{14} \mathrm{C}$ * @ 30 MeV

SHARC angular Coverage

TIGRESS Angular Coverage

11 HPGe clovers

Elastic and inelastic scattering

- States expected to be populated
- $0^{+}(\mathrm{gs}), 2^{+}(4.4 \mathrm{MeV}), 3^{-}(9.64 \mathrm{MeV})$
- Fixes microscopic optical potential for ${ }^{6} \mathrm{He}+{ }^{12} \mathrm{C}$
- Normalization on elastic scattering data
- Inelastic gets model parameters for nuclear excitation - challenging!

Elastic and inelastic E vs

- DCD
- Particle identification
- DBx
- ${ }^{6} \mathrm{He}$ elastic don't punch through
- ${ }^{6} \mathrm{He}$ and ${ }^{12} \mathrm{C}$ detected simultaneously
- Data cut done on this
- UmBx, UmCD
- No elastic or inelastic scattering observed past 90°

DCD Excitation Spectrum

- Particle identification
- As yet undetermined heavy scattering
- Interferes with first few channels of ground state and one channel in inelastic (4.4MeV)
- ${ }^{6} \mathrm{He}(\mathrm{p}, \mathrm{t})$
- Presumably due to water condensation on the target (also evidence of ${ }^{16} \mathrm{O}$ elastic scattering)
- Resolution limited by angular resolution
- Confirmed with simulations

DBx $-{ }^{6} \mathrm{He} \&{ }^{12} \mathrm{C}$ coincident detection

- ${ }^{6} \mathrm{He}+{ }^{12} \mathrm{C}$ two body reaction in a plane
- $\left|\varphi_{6 \mathrm{He}^{-}}-\varphi_{12 \mathrm{C}}\right|=\Delta \varphi=\pi$
- Energy of ${ }^{6} \mathrm{He}+{ }^{12} \mathrm{C}$ a constant
- $\mathrm{E}_{6 \mathrm{He}}+\mathrm{E}_{12 \mathrm{C}}=30 \mathrm{MeV}$
- Energy loss in target foil, dead layers cause $\mathrm{E}_{6 \mathrm{He}}+\mathrm{E}_{12 \mathrm{C}}<30$ MeV
- Data cuts made to maximize data minimize background
- $\Delta \varphi=5^{\circ}$
- $\Delta \mathrm{E}=3 \mathrm{MeV}$ GS, 1 MeV 4.4 MeV state
- Energy spread mainly due to ${ }^{12} \mathrm{C}$ straggling

Detection efficiency

- GS efficiency
- Little background
- Mostly interstrip and corner detection effects
- $2^{+} 4.4 \mathrm{MeV}$
- Higher background
- Stricter $\Delta \mathrm{E}$ cuts
- Coincident detection

Fred Sarazin (fsarazin@mines.edu)
Physics Department, Colorado School of Mines

Elastic/Inelastic angular distributions

Elastic scattering - angular distribution fit with FRESCO

PRELIMINARY

- Optical model from ${ }^{6}$ Li on ${ }^{12} \mathrm{C}$ at 30 MeV
- Mass adjusted for ${ }^{6} \mathrm{He}$
- Normalized

Search file: ElastieScattesing.search; Fresco input: C126HeOM2 frin

- 2^{+}to $0^{+} 4.438 \mathrm{MeV} \gamma$-ray transition observed
- Black: raw spectrum
- Red: Doppler corrected
- A few \% efficiency at 4 MeV
- Not enough statistics for $\alpha-\gamma$ tagging for angular distribution

${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right)$
- 6.09 MeV to 7.34 MeV excited states
- $\alpha-\gamma$ tagging required
- High γ-efficiency
- ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right)$ angular distribution only measured for 8.32 MeV (unbound) state

${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right){ }^{14} \mathrm{C}^{*} \mathrm{E}$ vs

Particle identification

DCD DBx

- UmBx / UmCD
- Large Q -value $(\mathrm{Q}=12.15 \mathrm{MeV})$: few contaminants
- DCD
- Particle ID
- Fusion-evaporation
- DBx
- Particle ID
- Only the highest energy 4 He punch through

${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right){ }^{14} \mathrm{C}^{*}$ excitation and γ spectra

SHARC

SHARC + TIGRESS

Proof of principle

8.32MeV angular distribution

${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{8} \mathrm{Be}\right){ }^{10} \mathrm{Be}^{*}$

${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{8} \mathrm{Be}\right) \mathrm{Q}=0.140 \mathrm{MeV}$

- Suggested a $2 p$ direct transfer by Milin et al., PRC 70 (2004) 044603
- $S_{2 p}\left({ }^{12} \mathrm{C}\right)=27.2 \mathrm{MeV}$
- Differential cross section with a factor of 20 larger than ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right)$ at 80 MeV lab beam energy
- Alternate possibility: α-transfer on ${ }^{6} \mathrm{He}$?
- $\mathrm{S}_{\alpha}\left({ }^{12} \mathrm{C}\right)=7.4 \mathrm{MeV}$
- A look at the 3α-like structure of ${ }^{12} \mathrm{C}_{\mathrm{gs}}$? Reaction mechanism involving excitation through the Hoyle state?

${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{8} \mathrm{Be}\right){ }^{10} \mathrm{Be}{ }^{*}$ kinematics

2α coincidence detection

Simulation:

- Kinematics of $\left.{ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{8} \mathrm{Be}\right)\right)^{10} \mathrm{Be}$ and ${ }^{8} \mathrm{Be}$ breakup at 30 MeV

Data - reconstruction from multiple cuts

- α-energy < 11.5MeV, α s don't punch through
- 2 hits in $\Delta \mathrm{E}$
- α-energy $>11.5 \mathrm{MeV}$, α s punch through
- Recoverable events:
- 2 hits in different front strips
- 2 hits in same front / different back strips
- Non-recoverable events:
- 2 hits in the same front / back strips
- Just one alpha detected

${ }^{8} \mathrm{Be}$ Reconstruction

${ }^{8} \mathrm{Be}->2 \alpha\left(\mathrm{Q}=92 \mathrm{keV}-\right.$ assuming $\left.{ }^{8} \mathrm{Be}_{\mathrm{gs}}\right)$

${ }^{10} \mathrm{Be}$ excitation

- GS and 2+ 3.3 MeV states clearly separated
- Angular distributions OK, but requires 2α detection efficiency calculation
- 5.9 MeV to 6.3MeV region
- Observed, but individual states not separable with SHARC only
- Not enough statistics for TIGRESS γ-tagging
- Beyond 6.3MeV ($\mathrm{S}_{\mathrm{n}}=6.8 \mathrm{MeV}$)
- Neutron unbound states
- Fusion-evaporation background
2α detection efficiency and angular distributions (DCD only)

PRELIMINARY

${ }^{6} \mathrm{He}+{ }^{12} \mathrm{C} @ 30 \mathrm{MeV}$ with SHARC + TIGRESS

- Elastic / inelastic scattering
- Angular distributions extracted for elastic and inelastic (4.4MeV)
- First fit on elastic, more work to be done on inelastic
- $\left.{ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right)\right)^{14} \mathrm{C}^{*}$
- Proof-of-principle of a-g tagging with SHARC+TIGRESS
- Angular distribution of 8.32 MeV (unbound) state in $14 \mathrm{C}^{*}$
- Not enough energy resolution with SHARC only (expected) to extract individual angular distributions of the states in $6-7 \mathrm{MeV}$ range.
- Not enough statistics to produce γ-tagged angular distributions
- ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{8} \mathrm{Be}\right){ }^{10} \mathrm{Be}^{*}$
- Angular distributions extracted for gs and first excited (3.3MeV) states
- Two-proton transfer favored, need angular distribution fits
- Something to be learned on ${ }^{12} \mathrm{C}_{\text {gs }}$? α-clustered states in the $\sim 6 \mathrm{MeV}$ region?

Millicent Audrey Smalley (b. Mar 22, 2012)

Duane Smalley (PhD student)

The SHARC / TIGRESS Collaboration:

University of York	University of Birmingham University of Manchester University of Surrey
University of Liverpool	
Colorado School of Mines	

© Sherman's lagoon

THE END

BACKUP SLIDES

Elastic/Inelastic Future Work

-Link inelastic scattering of DCD to DBx
-Create theory model

- Current model is adjusted mass parameters of ${ }^{6} \mathrm{Li}+{ }^{12} \mathrm{C}$ optical potential
- Create model of ${ }^{6} \mathrm{He}+{ }^{12} \mathrm{C}$
- Collaboration with F. Nunes at NSCL/MSU
-Theory model then basis for further transfer reaction studies
- Elastic scattering fits normalization parameter
- Inelastic fits nuclear excitation model

Future Work

- Complete analysis of 8.32 MeV angular distribution
- Add the 2 n transfer to the reaction model
- Can compare to Milin et al.
- Will help expand transfer model
- Reaction can be compared to (t, p) reaction
- Enhance of transfer?
- Population of states

Work Time line

- February 2012
- Defend Thesis proposal
- Winter 2012
- Continue data analysis
- Extract all angular distributions
- 2^{+}4.4 MeV inelastic
- 2^{+}8.32 MeV $2 n$ transfer
-0^{+}ground state (${ }^{6} \mathrm{He},{ }^{8} \mathrm{Be}$)
- $2^{+} 3.3 \mathrm{MeV}$
$\left({ }^{6} \mathrm{He},{ }^{8} \mathrm{Be}\right)$
- Winter/Spring 2012
- Develop microscopic model in collaboration with F. Nunes
- Use microscopic model to test hypothesis of ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{8} \mathrm{Be}\right){ }^{10} \mathrm{Be}$ reaction mechanism
- Spring/Summer 2012
- Make final conclusions
- October 2012
-Defend thesis

Benchmarking (${ }^{6} \mathrm{He},{ }^{4} \mathrm{He}$) against (t,p)

- Goal:

- Compare cross-sections \& angular distributions for selected states in a nucleus well studied by (t,p)
- Enhancement due to ${ }^{6} \mathrm{He}$ halo?
${ }^{12} \mathrm{C}(\mathrm{t}, \mathrm{p})$ studied by F.Ajzenberg-Selove et al., Phys. Rev. C17 (1978) 1283
${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{He},{ }^{4} \mathrm{He}\right)$ measured once by Milin et al., Nucl. Phys. A730 (2004) 285
- Same states populated
- Different intensities for some states
- Only one angular distribution extracted by Milin et al. (8.32MeV)

From M.Milin et al., Nucl. Phys. A730 (2004) 285

Efficiency Cuts

- Inter-strip distance between strips taken into account
- Simulations distribute charge collected proportionally according to distance between inter-strip
- DCD lower efficiency at low angles because of greater surface area of inter-strip to total surface area of strip ratio
- 24 back strips of 0.1 mm distance over a smaller surface area
- Coincident cuts lower efficiency due to dual detection of particles inter-strip efficiency Ex. At $\sim 32 \mathrm{deg} 6 \mathrm{He}$ efficiency is .70 and 12C eff at .8, coincident eff is . $7^{*} .8$ $=0.55$

