

Giornate Romane su "Particelle e Fisica Applicata"

Dipartimenti di Fisica e Matematica Sapienza Università di Roma, 13-14 Giugno 2011

Development of a diagnostic system for therapeutic proton beam and indirect monitoring of patient released dose

E. Basile, A. Carloni, D. M. Castelluccio, E.Cisbani, S. Frullani, G. Vacca

- Dipartimento Tecnologie e Salute -

Istituto Superiore di Sanità

Cancer Relevance

Dose delivered can be conformed to diseased tissue

Any additional progress can improve the number of the cured patients and the quality of live: the use of hadrons is presently on of the most promising way in specific cancers

Conventional radiotherapy and hadrontherap

Modern radiotherapy consists mainly of:

- Conventional radiotherapy with <u>electrons</u> and <u>photons</u> up to 25 MeV
 - the best choice for the treatment of the shallower tumors (electrons)
 - □ high conformation with IMRT
 - the most diffused option in radiotherapy treatments

2. Hadrontherapy

- more suitable for radioresistant tumors
- □ higher conformation (intrinsic)
- □ about 40 centers around the world
- 3. Others: BNCT, (Pion Therapy)

G. Kraft, GSI, Biophysik, Darmstadt and J. Debus, DKFZ, Heidelberg

Protontherapy with LINAC

Proton therapy accelerators produce beams with the following main features:

- □ energy high enough to reach the deepest tumors (up to 240 MeV)
- a beam current adequate to achieve treatment times comparable to those of conventional facilities
- □ the capability to provide uniform doses to the target volume

Hadrontherapy currently uses synchrotrons, cyclotrons or synchrocyclotrons

LINAC can be considered a valid option:

- □ There is no power loss from synchrotron radiation (simpler radioprotection)
- □ Injection and extraction are simpler than in circular accelerators
- LINAC can operate at any duty factor, working at high repetition rate and allowing pulse current modulation
- Expected to be cheaper
- ... but
- □ The technology is not fully proved for proton-therapy
- $\hfill\square$ ions can not be accelerated in a proton LINAC

Protontherapy with LINAC: the TOP-IMPLART project

The TOP IMPLART (ENEA - ISS - IFO) project aims to realize an innovative proton therapy facility, based for the first time, on a linear accelerator. Funding: ISS before 2002, Region after 2009

TOP-IMPLART LINAC features:

- □ The active scanning (3+1D) in
 - Intensity (instantaneous released dose)
 - Energy (depth)
 - Transversal Position (X/Y)

allows a highly conformational therapy \Rightarrow need of accurate monitoring of the beam parameters on a pulse by pulse basis

- The modular implementation allows a modular/progressive development (based on the financial flow)
- The use of widely diffused (3 GHz) radiofrequency technology reduces realization and maintenance costs

Purpose of the current research activity

Development of the beam monitor system for the TOP_IMPLART LINAC with indirect information of dose delivery

Suitable for the monitoring of proton (or electron) beam in other facilities

The monitoring system design must adhere to the following requirements:

- □ The beam parameters (position, intensity profile, direction/emittance) are continuously monitored independently from the beam controls
- □ Quick response (faster than beam pulse period)
- Provide feedback information to correct small deviation from the planned therapeutic treatment
- Automatic shutdown irradiation in case of large (not recoverable) deviation from planned parameters
- □ High reliability

Beam monitor system requirements for the TOP-IMLART LINAC

Pulsed beam characteristics		Beam monitor system specifications
 Energy in the range Beam cross section Beam current Average current: Pulse period Pulse frequency (it allows dose repainting without much time demanding) 	130-250 MeV 1-10 mm 0.1-10 μA 10 nA 1-5 μs 100-400 Hz	 Light compact chamber (segmented) Good spatial resolution (~1/10 mm) Wide dynamic range (10⁴ at least) for each channel Good sensitivity (~100 fC) Zero dead time (or near zero) Rapid response (< 1ms) Typical channels: few 100

Beam monitor in protontherapy

Beam monitoring systems in proton therapy are commonly based on **couples of** ionization chambers.

The chamber front-end electronics is generally performed by using traditional electronic schemes, e.g. **rate meter**:

Sensitivity is related to the "quantum" voltage V

Dynamic range is equal to the maximum number of pulses generated in the time duration of the beam pulse (high performance frequency/converter and scaler

~100 MHz*10 $\mu s,$ the dynamic range does not exceed 1000)

an alternative:

Charge amp and good performance ADC converters (limited by the input stage saturation, the ADC bit number, achieving the dynamic range of ~1000)

The beam monitor developed for the TOP-IMPLART LINAC

The TOP-IMPLART monitor system is based on 2D segmented ionization chamber driven by a dedicated front end electronics designed to OVERCOME limitations of the traditional electronics schemes (ratemeter, charge amp and ADC converters):

- the prototype consists of 2 planes separated by a gas gap
- the anode is engraved to obtain a pads-like map
- active surface able to cover the beam swap
- pads are connected along a given direction
- dedicated electronics

The chamber has been designed according to recent developments in micro pattern gaseous detectors and the readout foil has been produced by Rui De Oliveira at TS-DEM, CERN

The ionization chamber

The chamber operates in **ionization region** and has the following characteristics:

- **GAP** between anode and cathode: **2mm**
- Anode and cathode **ACTIVE AREA**: **7x7cm**²
- ANODE: Al (5µm)

- ✤ Gap between pad: 120 µm
- CHANNELS: 80 x 80

BIAS: 300 V

Simulation of the chamber Electrostatic Field

OPERA (OPerating environment for Electromagnetic Research and Analysis) simulation of the chamber field

□ Relative variation of the potential in the middle of the gap less than 0,03%

□ Relative variation of the field in the middle of the gap about 0,13%

SUPERIOR

Simulation of the perturbation effect induced by the chamber on the dose delivery

E (MeV)

The readout electronics

Based on a "dual range" trans-impedance amplifier with "sample and hold" mechanism (able to ensure an adequate charge dynamic range and sensitivity).

The **readout electronics** prototype controls 64 channels (but it is possible cascade several backplanes) and consists of:

- 4 front-end cards (1 card/16 channels), made of 2 two main blocks:
 - the input stage with the trans-impedance amplifier and dual range logic
 - the multiplexing logic that route the collected charges into a single ADC
- a passive backplane which provides power supply and distributes the signals between front-end and controller

Dual Range logic

Dual Input Regime and MUX

- GATE 1 ms 5.0 V Vout signal to .1 ms 0.50 V ADC -tr 12 Ext1 coup DC .1 ms HFRE. CLOCK 5.0 V slope CP_OUT signal (to shift I ms 5.8 V register) Tip DC 50
- Single channel charge is stored on the trans-impedance capacitance (sampled and hold)
- Analog values (up to 64) are multiplexed on a single ADC

Multiplexer/ADC DAQ System

Dual Regime performance

Input dynamic range larger than 10⁴ (from about 2 pC to tens of nC)
 Relative sensitivity less than 3% (minimum absolute sensitivity of 70 fC)

The data acquisition and processing system

SUPERIORS DI SAM

The DAQ system is based on VME standard components, managed by a modular software in C. Software use reliable FSM, multithreads and shared buffers used by the processing algorithms that produce the feedback to the beam control system within ms.

VME

transfer

Current activity

- Lab test almost completed on electronics prototype
- DAQ software ready, processing to be optimized
- Chamber under construction
- Finalization of the chamber prototype
- Characterization with rad source and under test beams (X ray and charged beam)
- Tests and characterization under the TOP proton beam (up to 20 MeV)
- Realization of a chamber telescope (with 3 chambers, at least)
- Electronics control system miniaturization with the use of a microcontroller which will replace the VME modules
- Further development of the acquisition and processing software

Link with patient monitor and "analytical" TPS

❑ The monitor system must check the consistency of the assessed dose with the planned dose in real time to provide the proper feedback:

A feedback system + patient monitor (e.g. movement) + a fast Treatment Plan System (using an analytical formulation of the dose distribution):

- evaluate, in real-time, the actual delivered dose,
- calculate in real time, the dose correction (if any) for the next pass

Considerazioni finali

- Tanto più localizzato è il rilascio di dose, tanto più precisi debbono essere gli strumenti per la sua pianificazione, controllo e verifica
- Un sistema di protonterapia in grado di competere con le tecniche più avanzate di radioterapia convenzionale deve integrare un sistema dinamico di rilascio del fascio
- L'utilizzo ottimale di un tale sistema richiede lo sviluppo e "fine tuning" di un gran numero di componenti fondamentali: TPS, Radiobiologia, Dosimetria, Diagnostica, Sala Trattamento, Imaging ...

