Crystal collimation of hadron beam at CERN, the UA9 experiment

Gianluca Cavoto
INFN Roma

Giornate Romane
Roma dipartimento di Fisica

$$
14 \text { giugno } 2011
$$

Collimation at colliders

- Passive protection for fast losses
- Cleaning and absorption for slow losses
- Defense against radiation
- Reduction of physics background

High luminosity requires (eventually) high currents

At 7 TeV 1/50.000 proton lost makes a SC magnet quench!

Traditional concept

A new idea!

- Coherent deviation of the primary halo
- Very small probability of inelastic interaction in the crystal
- Larger collimation efficiency
- Less impedance
- Reduced tertiary halo

Crystal channeling

Fig.2. The continuum potential of the (111) silicon channel (a), and the effective planar potential for the crystal bent with the average curvature (b) and with the maximum one (c) at the bending angle of 8.9 mrad . The critical transverse energies of particles $E_{x c}^{1}$ $E_{x c}^{2}$ for the wide channels in the bent crystal are shown by the dashed and dot-dashed lines, accordingly, in fig. 2 b and fig.2c. The same values of $E_{x c}$ in the straight channel potential are shown in fig.2a
J. Lindhard, Phys. Lett. 12, 126 (1964)
E. Tsyganov , Fermilab, TM-682 (1976)

Charged particle entering crystal with angle wrt lattice place smaller than a critical angle

$$
\theta_{I N}<\theta_{C}=\sqrt{\frac{2 U}{E}}
$$

Oscillation within the lattice planes!
Particles trapped!

If the crystal is BENT, additional centrifugal potential.
Charged particles are deflected!

In silicon (110) 400 GeV protons
$\theta_{\mathrm{c}} \sim 10 \mu \mathrm{rad}$

Crystal behaviour

Reflection behavior
W. Scandale et al. PRL 98, 154801 (2007)
W. Scandale et al. PRST 11, 063501 (2008)

Crystals

* Bending driven solely by anisotropy

Quasimosaic crystals

Chemical etching

Strip crystals

* Bending driven by 2-D elasticity law

CERN Accelerator
(not to scale)

LHC: Large Hadron Collider
SPS: Super Proton Synchrotro
AD: Antiproton Decelerato
PSB. Proton Sychrerator OnLine DEvice PSB: Proton Synchrotron
PS: Protion
LINAC: LINear ACcelerator
LEIR: Low Energy Ion Ring
CNGS: Cern Neutrinos to Gran Sasso

An international collaboration 60 people
CERN, Italy, Russia,UK, US
[INFN FE, LNF,LNL, NA, RM]

Data-taking during dedicated Machine Development days with SPS beam in coast mode (~ 5 in a year, in 2010 4 with protons and 1 with Pb ions
Extracted beam (microbeam at H 8) tests.

Collimation region

Out of collimation region

New scatterer + BLM (scint, Cerenkov, ionization ch.) in highly dispersive region to detect

1) off-momentum particles (produced in the crystals) which are displaced lateraly
2) any not absorbed secondary halo
Observe the spray rate as a function of scatterer lateral position

SPS UA9 devices

IHEP tank with goniometers Angular resolution $\pm 10 \mu \mathrm{rad}$

Strip crystal in IHEP tank

TAL absorber \& Quartz Cerenkov detector

TAL2 Al scatterer

High quality mechanical devices, accurate motion system

Alignment procedure

1) Search of the closed orbit, 2) redefine the beam at how many sigma we want.

Crystal and all UA9 movable devices are aligned during each fill.
Standard and fast procedure to find channeling configuration and collimation!

Roman pots

- Movable device housing detectors in secondary vacuum
" Used to acquire images of channeled beam
» Relevant to measure channeled beam direction (from centroid) and flux of proton of channeled beam

Vertical displacement

Online picture with Medipix

Angular scans

- Reduction factor of the inelastic losses due to inelastic interactions in channeling versus amorphous orientations.
- Measured with LHC-BLM and GEM detectors
- Very reproducible in several scans and fills

Depending on crystals 5 - 9 reduction factor (protons)
NEW: measurement also with Pb ions: 2-4 factor
Still off with respect to simulation

LHC collimator scans

LHC Phase 2
 Collimator

Amorphous/VR (multi-turn)

Measurement of channeled beam position and width " $\sigma_{\text {beam }} \sim 0.6 \mathrm{~mm}$
Comparison of plateau with core beam
» Deflection efficiency ~80\%,
Close to expectation (92% and 0.33 mm)

Collimation leakage

Paper in preparation

A: beam tails (off-momentum and betatronic)
B: multiple Coulomb scattering area
C: shadow of the TAL absorber Reduction of TERTIARY HALO almost 5 times larger!

Better cleaning efficiency

Beam

Collimation leakage with ions

Paper in preparation
Only one set of scans made by Cherenkov detector mounted on TAL2.

Summary \& Outlook

Summary of 2010 SPS test

Crystal collimation works very well based on channeling process
Optimal crystal alignment easily detected and achieved

Nuclear loss rate (including diffractive) strongly depressed in channeling versus amorphous orientation. Observed for both protons and ions!

Estimate of cleaning efficiency of collimation region
Leakage is a factor 5 better in aligned orientation versus amorphous

Next for 2001:
Better goniometer accuracy
Thinner Cerenkov detector to resolve proton pile-up
More accurate analysis of tertiary halo [new Medipix] disentagling betatron from synchrotron tertiary halo

Crystal test station at SPS H8

Silicon strip
 telescope and gas chamber
 to characterize new
 crystals

Study more exotic crystals for different collimation scheme

> Thin Crystals

Study new particle coherent interaction effects \square

Study ion Pb_{82} channeling

LHC Phase 2 collimation

Overall ~150 collimator locations in LHC and transfer lines

Two warm insertions dedicated to collimation:

- IR3 momentum cleaning
- IR7 betatron cleaning

Layout has been optimized for phase 1

Phase 1 means

30-40\% of nominal beam intensity
Assman. R. et al, "The final collimation system for the LHC", EPAC 2006

Letter of Intent for LHCC in preparation
 Plan is to install a crystal collimation region on LHC in 2012

Rotating crystal in the beam

Periphery of circulating beam

Appearance of $120 \mathrm{GeV} / \mathrm{c}$ proton beam deflected by crystal channeling

Road-map for a test in LHC

Parameters	Obtained in 2009	Obtained in 2010	Required for LHC	
Channeling efficiency	75	80	90 -95	$\star \star$
Nuclear loss reduction	5	5-10	$20 \div 30$	$\star \star$
Goniometer: angular accuracy [$\mu \mathrm{rad}$]	$30 \div 40$	10	$1 \div 2$	\star
Crystal bend [$\mu \mathrm{rad}]$	$140 \div 150$	$150 \div 170$	$50 \div 100$	$\star \star \star$
Crystal torsion [$\mu \mathrm{rad}]$	$20 \div 30$	$0.1 \div 1$ (*)	$0.1 \div 1$	* \star *
Amorphous layer on crystal	About zero	About zero	About zero	$\star \star$
Collimation leakage reduction	-	5	Should be analyzed	$\star \star$

(*) On external beam test

Backup

Collimation at LHC

A very energetic beam in a superconducting environment!

Stored beam energy : $\mathbf{3 6 0} \mathbf{~ M J}$ Quench limit for LHC magnets: 10 mJ over $1 \mathrm{~cm}^{3}$

At $7 \mathrm{TeV} 1 / 50.000$ proton lost makes a SC magnet quench!

(c)

(b)

(d)

UA? Proton coherent interactions

```
W. Scandale et al. PRL 98, 154801 (2007)
W. Scandale et al. PRST 11, 063501 (2008)
```

9 mm long Si-crystal deflecting 400 GeV protons

The angular profile is the change of beam direction induced by the crystal

The rotation angle is the angle of the crystal respect to beam direction

```
The particle density decreases from red to blue
```

(peak efficiency)

1 - "amorphous" orientation	
2 - channeling	(50%)
3 - de-channeling	(1%)
4-volume capture	(2%)
5 - volume reflection	(98%)

New thinner (2mm) crystal tested : channeling eff up to 80\%(theoretical limit!)

Our SPS beam

	bunched
RF Voltage [MV]	1.5
Momentum P [GeV/c]	120
Tune Qx	26.13
Tune Qy	26.18
Tune Qs	0.004
normalized emittance (at 1 σ) [mm mrad]	1.5
transverse radius (RMS) [mm]	1
momentum spread (RMS) $\Delta \mathrm{p} / \mathrm{p}$	4×10^{-4}
Longitudinal emittance $[\mathrm{eV}-\mathrm{s}]$	0.4

- Intensity a few 10^{10} up to a few 10^{12} circulating particles in a single bunch.
- Initial beam lifetime larger than 80 h , determined by the SPS vacuum.
- A halo flux of a few 10 to a few 10^{3} particles per turn

Channeled beam profiles

Crystal 1
The skew inclination of the extracted beam is due to the combined effect of the strip crystal residual torsion and to its quasi-axial orientation that inducing channeling by the skew crystal planes.

Jun 2011 14th

G.Cavoto

Crystal 2

An example of Medipix detector

MD in SPS 2010

5 MD with protons and Pb ions
2 quasi-mosaic and 2 strip crystals being tested

Online pictures!

Crystal characterization

Proton backscattering yield as
a function of depth.

INFN LNL
Backscattered protons are proportional to non-channeled particles.
Inefficiency (χ) can be measured as a function of depth.

At low energy, inefficiency is very sensitive to nuclear scattering and defects.

Miscut angle measured at $30 \mu \mathrm{rad}$

High Resolution scan around X-Ray Bragg Diffraction of crystalline planes.

Find lattice defects: plane deformation on crystal surface

Collimation efficiency with beam profiles

Multi-pass channeling efficiency very large -> compatible with 100\%
Measured efficiency ≥ 86 \%
20% uncertainty due to BCT and MEDIPIX calibration
large ClosedOrbit glitches $\geq 200 \mathrm{~mm}$ every a few tenth of seconds during the data taking
W. Scandale et al. / Physics

Letters B 692 (2010) 78-82)

Inelastic interaction rate close to crystal (strip, \#1)

Depression in channeling mode not completely described by MC (x5 vs. x 50)

Crystal vertical torsion not compensated

RD22 goniometer unstable

Deflection efficiency for crys 1 and 2 : (75 ± 4)\% and (85 ± 5)\%
But large variation in different scan [alignment errors]

Inelastic rate in channeling mode: H8 beam results

W.Scandale, et al., NIMB 268 (2010) 2655-2659

Experimental
set-up

Select event with incident angle smaller than a given cutting angle.

Count events with hit on S1 \& S2

Probability of inelastic interaction in channeling vs amorphous is 3-4 times smaller!

Parametric X Radiation

- Bragg diffraction of virtual photon of charged particles on lattice planes

- Observed at H8 (paper sub to PLB)
- Can be used to monitor the curvature of the crystal

Thin crystals

- Special 10-30 $\mu \mathrm{m}$ thin crystal ($\lambda / 2$ or $\lambda / 4$): they act as scatterer or mirror
- improve problem of imperfect surface layer of bent crystal (BC)

Torsion removal

Critical to reach good uniformity along the crystal height

2010 ang. scan results

Protons	Apertures		Reduction factor				
	Crystal	Cr $[\sigma]$	TAL[$[\sigma]$	Sci L	Cerenkov A	GEM 1	
3	5.7	7.2	5.8 ± 0.6	3.3 ± 0.3	4.1 ± 1.0	4.5 ± 0.3	
4	7.1	8.6	8.2 ± 0.8	2.8 ± 0.1	6.9 ± 0.3	7.3 ± 0.3	
3	6.2	5.9	5.5 ± 0.8	4.3 ± 0.4	3.9 ± 0.2	5.8 ± 0.8	
3	6.2	5.9	7.4 ± 1.7	5.7 ± 0.4	5.1 ± 0.3	8.1 ± 0.9	

Ions		Apertures	
	$\mathrm{Cr}[\sigma]$	TAL[$\sigma]$	Reduction factor BLM4
3	5.7	8.4	1.9 ± 0.2
3	5.7	9.3	1.9 ± 0.2
4	4.0	5.7	3.5 ± 0.4
4	5.2	7.4	3.7 ± 0.6

LHC collimator scans

protons Crystal	Deflection angle [$\mu \mathrm{rad}]$	Sigma [$\mu \mathrm{rad}]$	Channeling efficiency
3	178	29	69%
3	186	25	67%

ions	Deflection angle [urad]	Sigma [رrad]	Channeling efficiency
3	199	24	74%
3	199	26	68%
3	226	33	69%
3	198	24	53%
3	146	41	45%

A model for the leakage

Need a more detailed simulation to compare with data

Need more data with larger range scan

UA9 layout

UA9 Deflected beam profile with medipix
 INFN

Medipix sensor of the type inserted in the UA9 roman pot, provided by L. Tlustos (PH/ESE)

- 256×256 square pixels
- 1 pixel size $=55 \mu \mathrm{~m}$
- 1 frame integration time 1 s
- Pick/valley density ratio $=10$
- We observed a ratio of 30 (recording lost for a computer crash)
pixel number-x

UA9
 crystal collimation efficiency using the LHC-collimator

nuclear rate in H 8

- Nuclear loss rate (including diffractive) strongly depressed
- In channeling versus amorphous mode : $\times 5$ in multi-turn (SPS) and $\times 3$ in single-pass (NA)

Profilo orizzontale del fascio osservato a circa 70 m dal goniometro variando l'orientazione del cristallo rispetto al fascio in step di $4 \mu \mathrm{rad}$

cm

INTENSE PRODUCTION OF e+e- PAIRS WITH RADIATION FROM CRYSTALS

- SUMMARY \& CONCLUSIONS

○ * The hybrid source using the intense radiation from an axially oriented crystal to create a large number of e+e- pairs in an amorphous converter placed at some distance is very promising for the yield, the phase space and above all for the reduced PEDD.

- * Such a system has been chosen as the baseline for CLIC
- * Further studies of the hybrid source may concern the thermal behavior, particularly for the fast energy deposition
- *Systematic tests are being operated at KEK; results on the $\mathrm{e}+$ yield and enhancement are already available. Thermal observations are under development.

