

Maria Paola Lombardo

BOTTOMONIUM AND QUARK GLUON PLASMA

Quark Gluon Plasma

Deconfinement

Chiral Symmetry Restoration

Running coupling from confinement to QGP

Karsch et al.

Running coupling from confinement to QGP

Heavy Quarks insensitive to Chiral Symmetry : Quarkonia probe Dynamics of Confinement

Picture from B. Mueller

Quarkonia and Quark Gluon Plasma

From Helmut Satz, Lecture III @ LNFI

2. Quarkonia melt in a hot QGP

Matsui & HS 1986, Karsch et al. 1988

• QGP consists of deconfined color charges, hence \exists color screening for $Q\bar{Q}$ state

• screening radius $r_D(T)$ decreases with temperature T

- if $r_D(T)$ falls below binding radius r_i of $Q\bar{Q}$ state i, Q and \bar{Q} cannot bind, quarkonium i cannot exist
- quarkonium dissociation points T_i , from $r_D(T_i) = r_i$, specify temperature of QGP

8

From H. Satz, Lecture III @ LNFI

Color screening \Rightarrow binding weaker and of shorter range

when force range/screening radius become less than binding radius, Q and \overline{Q} cannot "see" each other

 \Rightarrow quarkonium dissociation points

determine temperature \Rightarrow energy density of medium

How to calculate quarkonium dissociation temperatures?

- determine heavy quark potential V(r, T) in finite temperature QCD, solve Schrödinger equation
- calculate in-medium quarkonium spectrum $\sigma(\omega, T)$ directly in finite temperature lattice QCD

T melting from potential models: ambiguous results, pure QM not really justifiable

T melting from lattice QCD + MEM analysis

23

Petreczky, 2009

Tentative summary of present results (H. Satz)

- J/ψ survives up to $T \simeq 1.5 2.0 T_c$
- χ and ψ' dissociated at or slightly above T_c
- in accord with U-based potential studies

ction for $\beta = 6.5$ and $N_t = 40$, 20 corresponding to temperatures the default model $m(\omega) = 0.01$ has been used.

How to calculate quarkonium dissociation temperatures?

- determine heavy quark potential V(r, T) in finite temperature QCD, solve Schrödinger equation Ambiguous
- calculate in-medium quarkonium spectrum $\sigma(\omega, T)$ directly in finite temperature lattice QCD Still too expensive

THIS TALK: LATTICE QCD for light quarks + NRQCD for bottom

BOTTOMONIUM AND QUARK GLUON PLASMA

G. AARTS, S.KIM, M.P.L, M.B.OKTAY,S.M.RYAN, D.K. SINCLAIR, J.I.SKULLERUD PHYS. REV. LETT. 106 (2011)

WORK IN PROGRESS +C. ALLTON : FASTSUM COLLABORATION

Three steps to Bottomonium: 1. Work in Euclidean space.....

$$G(\tau) = \int_0^\infty \frac{d\omega}{\pi} \frac{\cosh\left[\omega(\tau - 1/2T)\right]}{\sinh\left(\omega/2T\right)} \rho(\omega).$$

Nontrivial spectral weight at small ω yields a constant τ independent contribution to the correlator, which must
be treated with care Laine, Petreckzy et al.

...use NRQCD – still valid in our T range

$$\omega = 2M + \omega' \qquad M \gg T$$

$$G(\tau) = \int_{-2M}^{\infty} \frac{d\omega'}{\pi} \exp(-\omega'\tau)\rho(\omega') \qquad (\text{NRQCD})$$

and consider free behaviour for S and P waves

$$G_S(\tau) \sim \int \frac{d^3 p}{(2\pi)^3} \exp(-2E_{\mathbf{p}}\tau) \sim \tau^{-3/2},$$

 $G_P(\tau) \sim \int \frac{d^3 p}{(2\pi)^3} \mathbf{p}^2 \exp(-2E_{\mathbf{p}}\tau) \sim \tau^{-5/2},$

 $E_{\mathbf{p}} =$

Laine et al 2010

Step 2:

Full Relativistic Lattice QCD for light quarks with asymmetric gauge couplings to increase number of points in t-direction

$$(\xi \equiv a_s/a_\tau = 6)$$

N_s	N_{τ}	a_{τ}^{-1}	T(MeV)	T/T_c	No. of Conf.
12	80	$7.35 \mathrm{GeV}$	90	0.42	74
12	32	$7.06 \mathrm{GeV}$	221	1.05	500
12	24	$7.06 \mathrm{GeV}$	294	1.40	500
12	16	$7.06 \mathrm{GeV}$	441	2.09	500

Step 3 : NRQCD for bottom quarks

Check: Zero Temperature Results

state	$a_{\tau}\Delta E$	Mass~(MeV)	Exp. (MeV) $[34]$
$1^1S_0(\eta_b)$	0.118(1)	9438(7)	9390.9(2.8)
$2^1 S_0(\eta_b(2S))$	0.197(2)	10009(14)	-
$1^3S_1(\Upsilon)$	0.121(1)	9460^{*}	9460.30(26)
$2^3S_1(\Upsilon')$	0.198(2)	10017(14)	10023.26(31)
$1^1 P_1(h_b)$	0.178(2)	9872(14)	-
$1^3P_0(\chi_{b0})$	0.175(4)	9850(28)	9859.44(42)(31)
$1^3 P_1(\chi_{b1})$	0.176(3)	9858(21)	9892.78(26)(31)
$1^3P_2(\chi_{b2})$	0.182(3)	9901(21)	9912.21(26)(31)

Υ and χ_b in the plasma : **RESULTS**

Bound states

$$G(\tau) \sim \exp(-\Delta E \tau),$$

 $m_{\text{eff}}(\tau) = -\log[G(\tau)/G(\tau - a_{\tau})]$

Free quarks

$$G(\tau) \sim \tau^{-\gamma}$$

 $\gamma_{\text{eff}}(\tau) = -\tau \frac{G'(\tau)}{G(\tau)} = -\tau \frac{G(\tau + a_{\tau}) - G(\tau - a_{\tau})}{2a_{\tau}G(\tau)}$

Effective mass for the Y

Effective mass for the χ

χ propagators and power law at T = 2.09 Tc : consistent with a free behaviour!

Y and (NO) free behaviour

χ free behaviour at T = 2.09Tc

Summary

- We have studied the temperature dependence of bottomonium for T < T 2.1 Tc, using nonrelativistic dynamics for the bottom quark and full relativistic QCD for two light quarks
- The U is insensitive to the temperature in this range
- The χ show a crossover from an exponential decay characterizing the hadronic phase to a power-law behaviour consistent with nearly-free dynamics at 2Tc