

Timing performance of Timepix4, a large area four side buttable pixel detector readout chip

Riccardo Bolzonella, CERN, EP-ESE, on behalf of Medipix4 collaboration

- Medipix4 collaboration and Timepix4 overview
- ➤ Timepix4 architecture and operating principle
 - pixels arrangement
 - Through-Silicon-Vias and Wire Bonds
 - acquisition modes
 - Time-of-Arrival (ToA) and Time-over-Threshold (ToT) measurements
- Measured performance in different applications
- > Through-Silicon-Vias (TSV) assemblies status
- > Future projects: the Picopix
- Conclusions

The Medipix4 collaboration

Medipix4 collaboration

- ➤ Timepix4 (2019) [X. Llopart et al 2022 JINST 17 C01044]
 - 65nm technology
 - Pixel matrix of 512 x 448 pixels (55 x 55 μm²)
 - Particle identification and tracking (Data-driven and zero suppressed)
 - o 195 ps time binning
 - X-ray Imaging (full frame based with CRW sequential readout) with a single threshold and fine pitch mode only
- Medipix4 (2022) [V. Sriskaran et al 2024 JINST 19 P02024]
 - 130nm technology
 - Pixel matrix of 320 x 320 (75 x 75 μm²) or 160 x 160 (150 x 150 μm²)
 - Charge Summing architecture
 - Aimed at high rate spectroscopic imaging, optimized for high-Z material

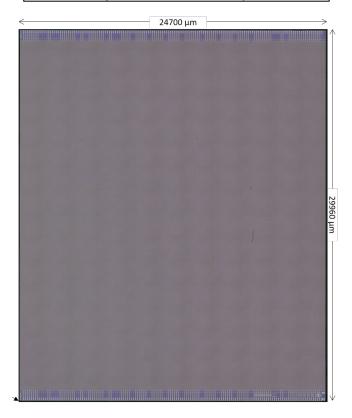
➤ Both chips have a 4-side buttable architecture:

- Periphery integrated inside the pixel matrix
- Prepared for readout using TSV (Through-Silicon-Vias)
- Large active area ASICs

21 Medipix4 collaboration members

- · CEA, Paris, France
- CERN, Geneva, Switzerland
- DESY, Hamburg, Germany
- Diamond Light Source, England, UK
- IEAP, Czech Technical University, Prague, Czech R.
- · IFAE, Barcelona, Spain
- · JINR, Dubna, Russian Federation
- NIKHEF, Amsterdam, The Netherlands
- · University of California, Berkeley, USA
- University of Canterbury, Christchurch, New Zealand
- University of Geneva, Switzerland
- University of Glasgow, Scotland, UK
- · University of Houston, USA
- University of Maastricht, The Netherlands
- University of Oxford, England, UK
- INFN, Italy
- · LNLS, Brazil
- · CSNS, China
- PNRI, Philippines
- · University of Tennessee, USA
- Czech Academy of Science, Prague, Czech R.

Particle tracking:


- very high rate pixel telescope
- $\circ~$ sensor studies with < 100 ps timing resolution and ~10 μm spatial resolution
- o time-of-flight mass spectroscopy
- radiation monitors
- o compton camera
- o gamma and neutron imaging
- x-ray imaging
- quantum applications (entangled photons measurements)

> Frame-based imaging:

x-ray imaging in synchrotrons with very high rates (> 10⁹ particles/mm²/s)

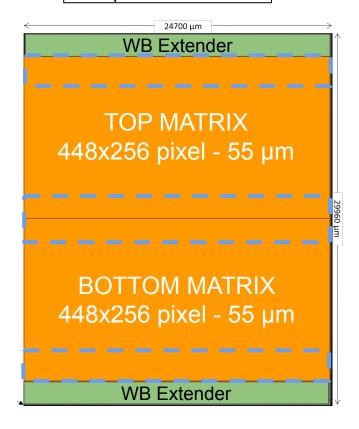
Timepix4 architecture and operating principle

Timepix4 (multiple microscope pictures blended)

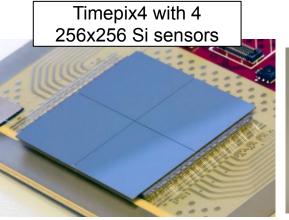
- > 2 matrices: TOP and BOTTOM
 - o 256 x 448 pixels each, 55 μm pitch

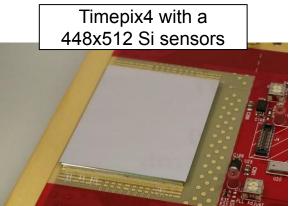
Timepix4 architecture simplified schematic

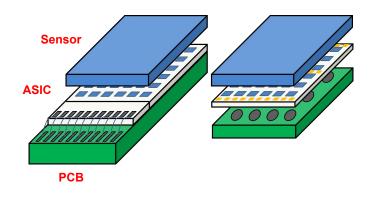
24700 μm TOP MATRIX 448x256 pixel - 55 μm **BOTTOM MATRIX** 448x256 pixel - 55 μm

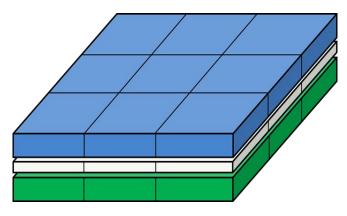

- > 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each, 55 μm pitch

Timepix4 architecture simplified schematic

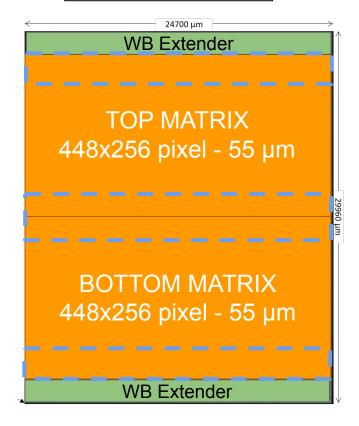

24700 μm TOP periphery + TSV TOP MATRIX 448x256 pixel - 55 µm CENTER periphery **BOTTOM MATRIX** 448x256 pixel - 55 µm BOTTOM periphery + TSV


- ➤ 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each, 55 μm pitch
- 3 peripheries:
 - TOP and BOTTOM: data readout (16 x 10.24 Gbps serializers)
 - CENTER: analog blocks (global DACs and ADCs, ...)


Timepix4 architecture simplified schematic

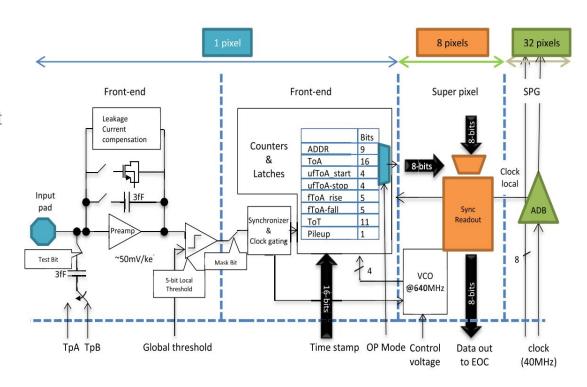


- 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each, 55 μm pitch
- 3 peripheries:
 - TOP and BOTTOM: data readout (16 x 10.24 Gbps serializers)
 - CENTER: analog blocks (global DACs and ADCs, ...)
- 2 wire bond extenders on edge peripheries

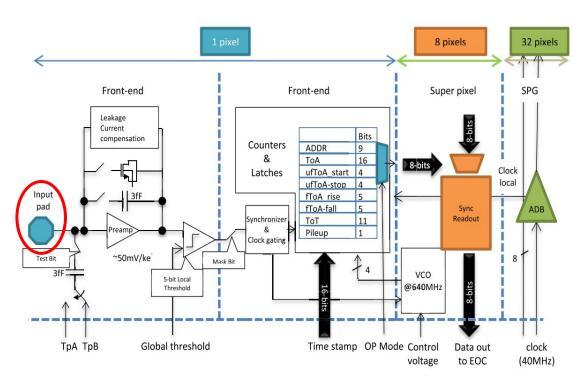


- 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each, 55 μm pitch
- 3 peripheries:
 - TOP and BOTTOM: data readout (16 x 10.24 Gbps serializers)
 - CENTER: analog blocks (global DACs and ADCs, ...)
- 2 wire bond extenders on edge peripheries
- > Through-Silicon-Via compatible
 - 4-side buttable
 - possibility to place several chips adjacent to cover larger detectors

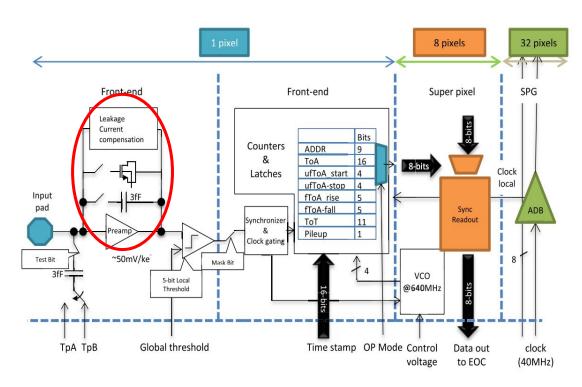
Timepix4 architecture simplified schematic

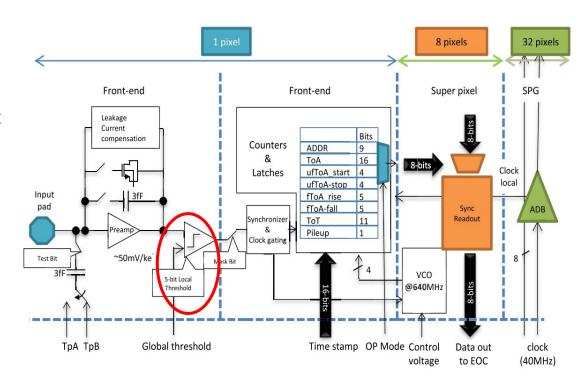

- 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each, 55 μm pitch
- 3 peripheries:
 - TOP and BOTTOM: data readout (16 x 10.24 Gbps serializers)
 - CENTER: analog blocks (global DACs and ADCs, ...)
- 2 wire bond extenders on edge peripheries
- ➤ Through-Silicon-Via compatible
 - 4-side buttable
 - possibility to place several chips adjacent to cover larger detectors
- > Dicing options:
 - with wire bonds: ~93.7 % active area
 - with TSV: ~99.5 % active area

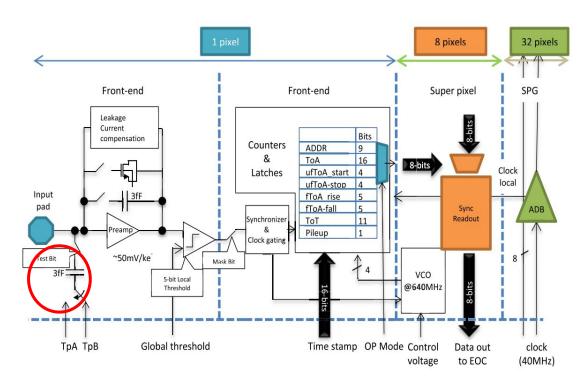
Timepix4 architecture simplified schematic

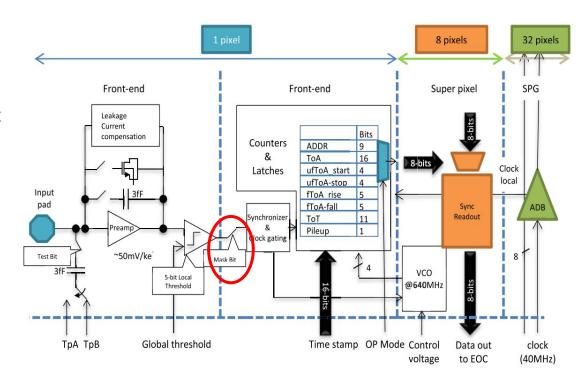


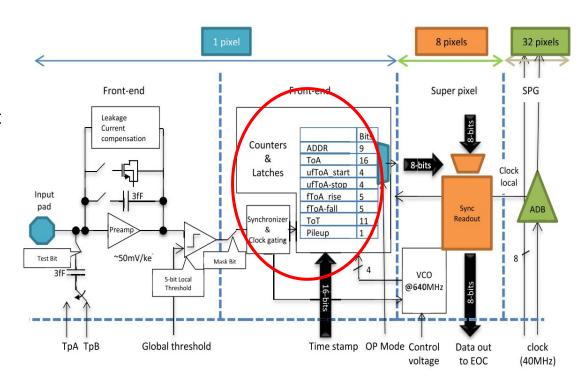
- 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each, 55 μm pitch
- 3 peripheries:
 - TOP and BOTTOM: data readout (16 x 10.24 Gbps serializers)
 - CENTER: analog blocks (global DACs and ADCs, ...)
- 2 wire bond extenders on edge peripheries
- > Through-Silicon-Via compatible
 - 4-side buttable
 - possibility to place several chips adjacent to cover larger detectors
- Dicing options:
 - with wire bonds: ~93.7 % active area
 - with TSV: ~99.5 % active area

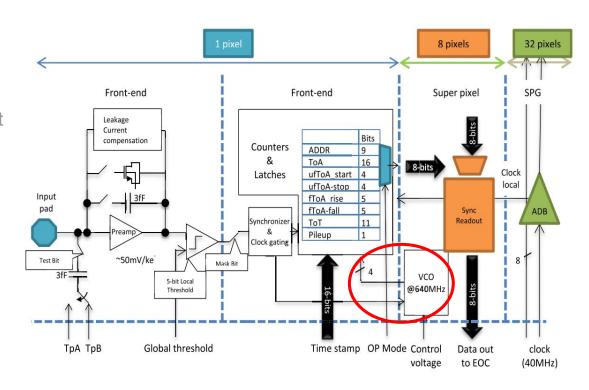

- Pixel level:
 - analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - o digital front-end:
 - pixel mask
 - TDC and time stamp

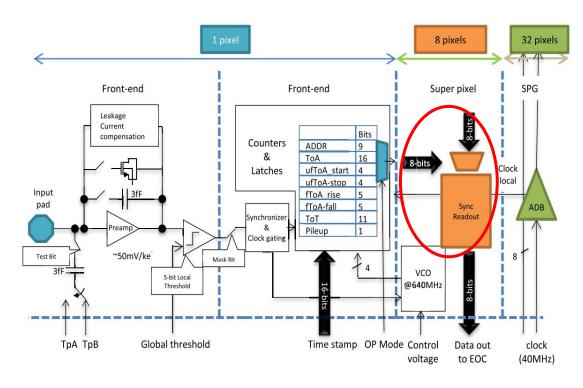

- Pixel level:
 - analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - o digital front-end:
 - pixel mask
 - TDC and time stamp

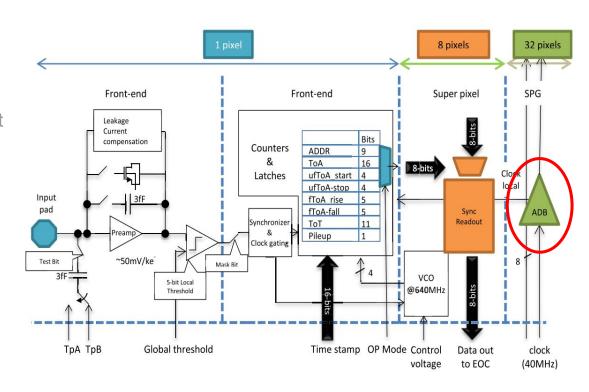

- Pixel level:
 - o analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - o digital front-end:
 - pixel mask
 - TDC and time stamp


- Pixel level:
 - o analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - o digital front-end:
 - pixel mask
 - TDC and time stamp


- Pixel level:
 - o analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - o digital front-end:
 - pixel mask
 - TDC and time stamp


- Pixel level:
 - analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - o digital front-end:
 - pixel mask
 - TDC and time stamp


- Pixel level:
 - o analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - digital front-end:
 - pixel mask
 - TDC and time stamp


- Pixel level:
 - o analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - o digital front-end:
 - pixel mask
 - TDC and time stamp
- Super Pixel level:
 - Voltage-Controlled Oscillator

- Pixel level:
 - o analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - o digital front-end:
 - pixel mask
 - TDC and time stamp
- Super Pixel level:
 - Voltage-Controlled Oscillator
 - o pixels readout

- Pixel level:
 - analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - o digital front-end:
 - pixel mask
 - TDC and time stamp
- Super Pixel level:
 - Voltage-Controlled Oscillator
 - pixels readout
- Super Pixel Group level:
 - Adjustable Delay Buffer, to correctly distribute the reference clock to the pixels across the double column

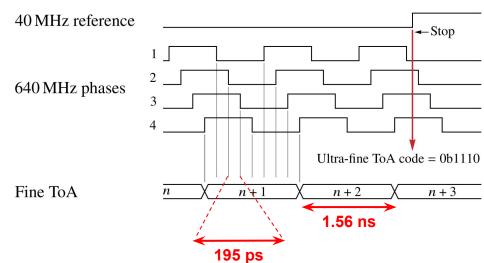
Readout modes: data driven

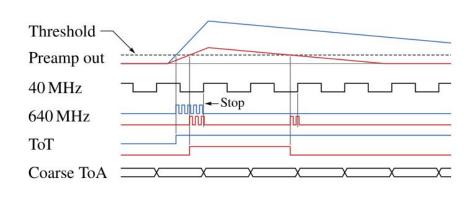
- Event-based readout
- Zero-suppressed
- ➤ ToA-ToT mode:
 - pixel coordinates
 - timestamp
 - charge

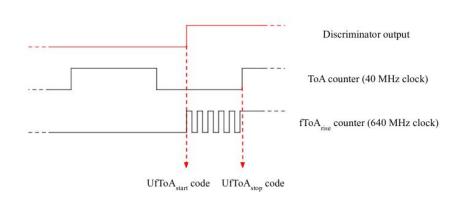
harge: 21 bits		
----------------	--	--

ToA/ToT mode packets specification Name Width Bits used		
Line mant me	width	Dits useu
Pixel address	18	[63:46]
ToA	16	[45:30]
ufToA_start	4	[29:26]
ufToA_stop	4	[25:22]
fToA_rise	5	[21:17]
fToA_fall	5	[16:12]
ToT	11	[11:1]
Pileup	1	[0:0]

Time: 29 bits

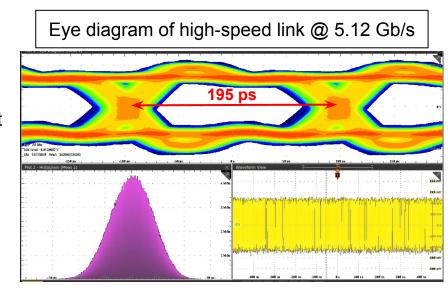

Readout modes: data driven


- Event-based readout
- Zero-suppressed
- > ToA-ToT mode:
 - pixel coordinates
 - timestamp
 - charge
- ➤ 64-bit packets for each event, encoded with 64b/66b standard encoding communication protocol
- Output via:
 - slow control: 40 Mb/s (2.6 Hz/pixel)
 - high speed links: from 40 Mb/s to ≥ 160 Gb/s
 (10.8 kHz/pixel)


ToA/ToT mode packets specification			
Name	Width	Bits used	
Pixel address	18	[63:46]	
ToA	16	[45:30]	
ufToA_start	4	[29:26]	
ufToA_stop	4	[25:22]	
fToA_rise	5	[21:17]	
fToA_fall	5	[16:12]	
ToT	11	[11:1]	
Pileup	1	[0:0]	

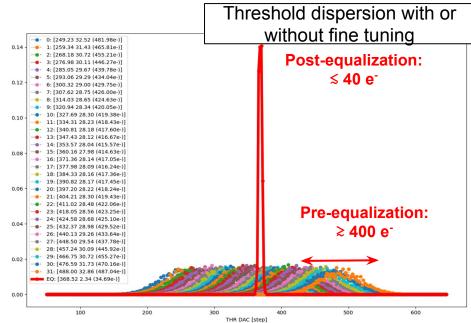
ToA and ToT measurements

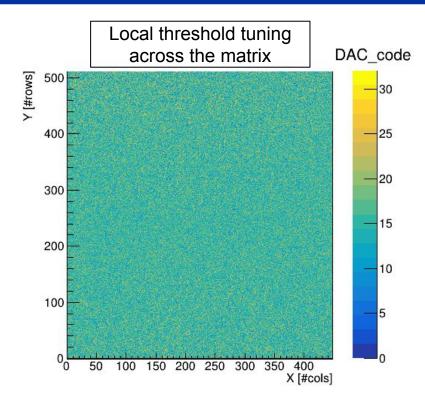
- > ToA measurement:
 - coarse Time-of-Arrival (ToA), 40 MHz clock (25 ns bins width)
 - fine-ToA bins, 640 MHz clock, generated by the VCO (1.56 ns bins width)
 - Ultrafine-ToA, by 4 copies of 640 MHz clock (195 ps bins width)
- ToT measurements: only coarse and fine



[K. Heijhoff et al 2022 JINST 17 P07006]

High speed readout

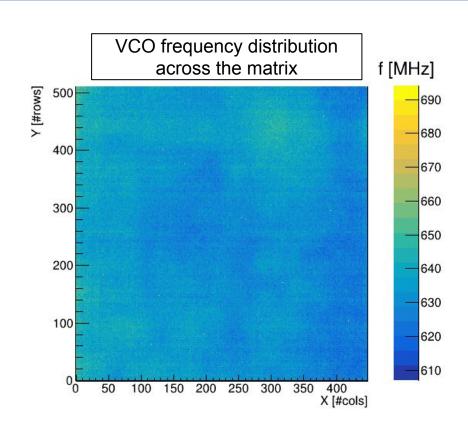

- Gigabit Wireline Transmitter with a Clock Cleaner (GWT-CC):
 - serializes data stream
 - transmits data to an off-chip receiver
- High configurability:
 - each link can be configured to operate at different speed, from 40 Mb/s to 10.24 Gb/s
 - o possible to use from 1 to 8 links per half-matrix
- Max bandwidth of 160 Gb/s
- PRBS generator for links tests
- Tested up to 5.12 Gb/s, both with WB and TSV connection
- Timepix4 and control board links alignment and physics measurement performed only @ 2.56 Gb/s



Preliminary calibrations

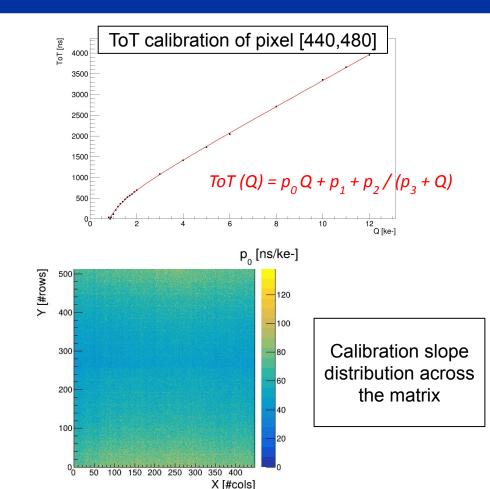
Preliminary calibrations - Threshold equalization and noise

- Threshold equalization: threshold fine tuning at pixel level
- On-pixel 5-bits DAC to locally shift the threshold
- Method based on noise floor threshold scan
- Noisy pixel detection and masking

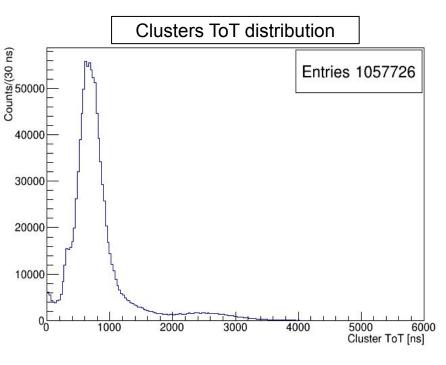


Typically less than 10 pixels masked out of ~230 thousand pixels

[X. Llopart, XII Front-End Electronics Workshop]

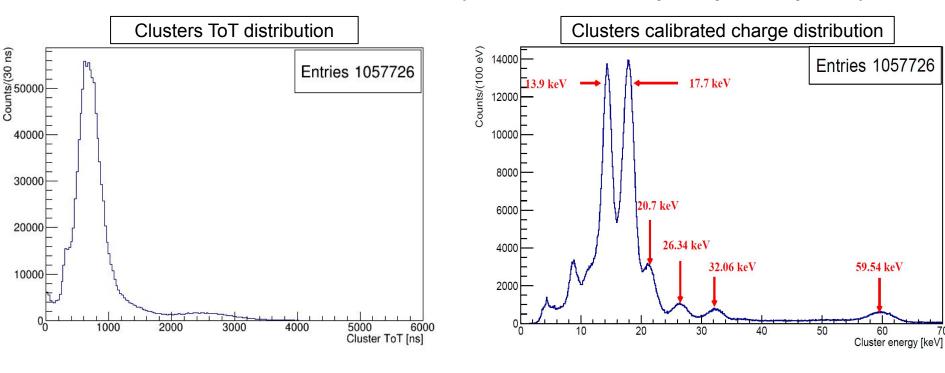

Preliminary calibrations - VCO frequency calibration

- Voltage-Controlled Oscillators frequency calibration:
 - On pixel VCO oscillation frequency controlled by a PLL at the center of the chip (@ 640 MHz nominal)
 - Spread caused by power supply dispersion due to large size and wire bonds
 - This spread would heavily affect the timing performance:
 - calibration and offline ToA correction allows to improve by 100-300 ps, depending on the particular measurement


Preliminary calibration - ToT vs charge calibration

- > ToT vs Q calibration with testpulse:
 - at fixed charge, large ToT spread across the matrix due to local gain differences
 - calibration required to correctly reconstruct the pixel charge and to correctly perform the clustering
 - non linear calibration performed with integrated testpulse tool
 - per-pixel calibration, exploiting high-speed links readout

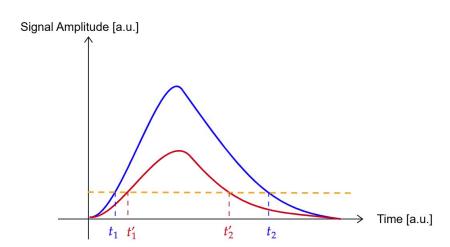
Preliminary calibration - ToT vs charge calibration


Validation with radioactive sources(¹³⁷Cs and ²⁴¹Am superimposed spectra)

R. Bolzonella et al 2024 JINST 19 P07021

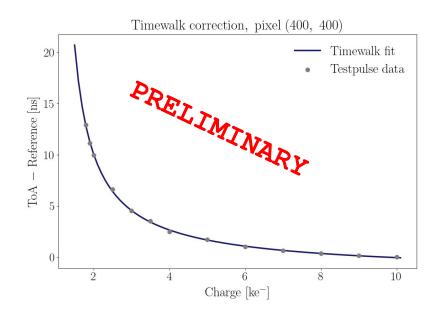
Preliminary calibration - ToT vs charge calibration

Validation with radioactive sources(¹³⁷Cs and ²⁴¹Am superimposed spectra)



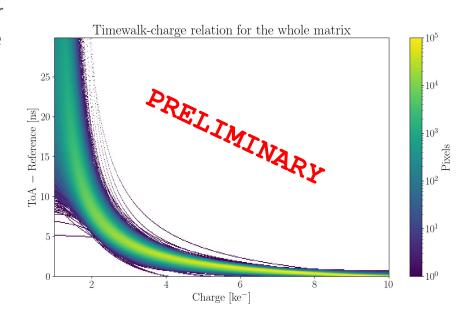
R. Bolzonella et al 2024 JINST 19 P07021

- Resolution up to 8% (@60 keV)
- > ASIC bonded to 100 µm n-on-p Si detector


Up to 1.6 keV FHWM (@ 14 keV)

➤ Lower amplitude signals rise above threshold later than higher amplitude signals starting at the same time ⇒ Time-walk effect

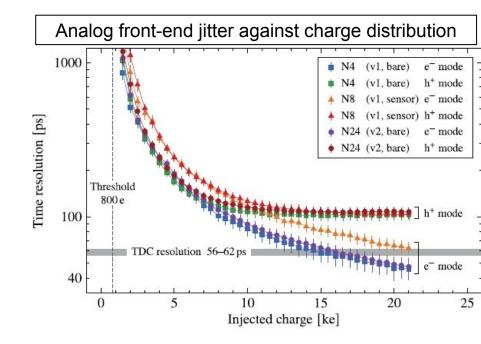
Preliminary calibration - Time walk calibration


- ➤ Lower amplitude signals rise above threshold later than higher amplitude signals starting at the same time ⇒ Time-walk effect
- Internal testpulse used to calibrate the time-walk per pixel
 - set a constant delay between the test-pulse and an external shutter
 - shutter time-stamp used as reference
 - ToA determined for several input charges

N. Dimova, iWoRiD 2025

Preliminary calibration - Time walk calibration

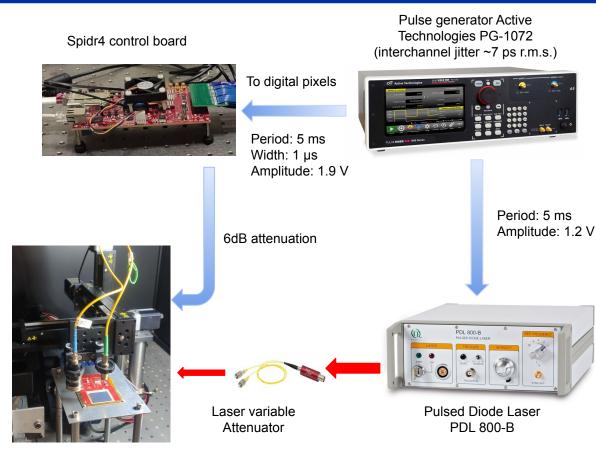
- ➤ Lower amplitude signals rise above threshold later than higher amplitude signals starting at the same time ⇒ Time-walk effect
- Internal testpulse used to calibrate the time-walk per pixel
 - set a constant delay between the test-pulse and an external shutter
 - o shutter time-stamp used as reference
 - ToA determined for several input charges
- Procedure repeated in every pixel to see the calibration variability


N. Dimova, iWoRiD 2025

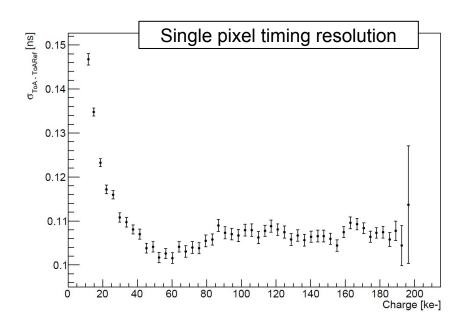
Measured performance

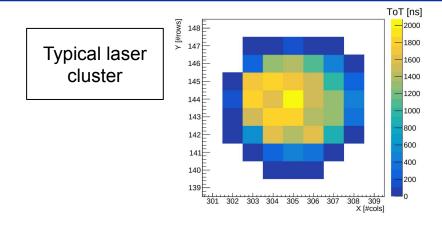
Timing resolution measurements - Test pulse

- Analog internal test pulse used to measure the analog front-end jitter
- Hole-collecting mode:
 - jitter asymptotic to ~100 ps r.m.s., as expected due to slew rate limitations
 - bare Timepix4 and Timepix4 bonded to Si sensor show similar trends
 - at low charge, worst resolution with sensor bonded
- Electron-collecting mode:
 - no asymptotic trend
 - resolution lower than 50 ps r.m.s. both with bare and bonded chips

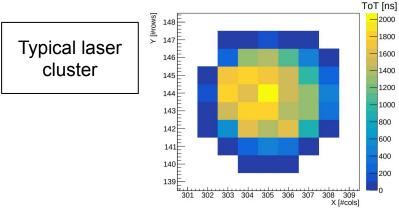

Timing resolution measurements - Laser measurements

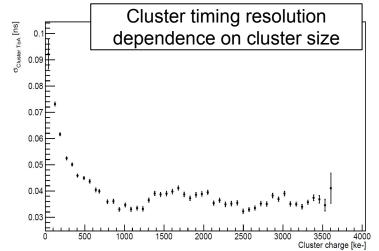
- Spidr4 control board
- ➤ Timepix4v2:
 - bonded to a 100 μm n-on-p Si detector biased at -150 V
 - metalization with holes pattern
 - Courtesy of CERN and NIKHEF Medipix4/VELO groups
- Waveform generator
 - input signal to digital pixels
 - laser trigger
- ➤ Laser:
 - o 1060 nm
 - variable attenuator





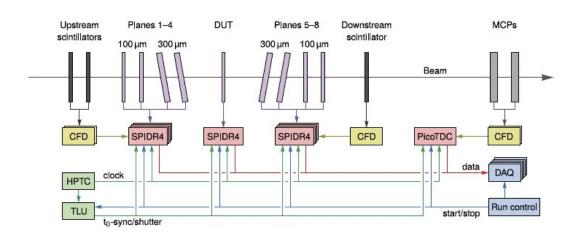
Timing resolution measurements - Laser measurements

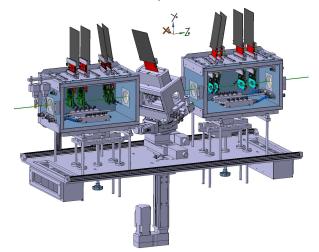



- Distribution of timing resolution as a function of injected charge in the most illuminated pixel
- Reference signal contribution estimated to be 72±3 ps rms
- After the contribution of the reference signal has been subtracted, a resolution of 107±3 ps rms is obtained

R. Bolzonella et al 2024 JINST 19 P07021

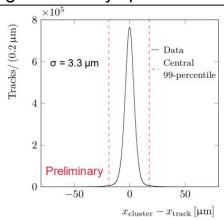
Timing resolution measurements - Laser measurements

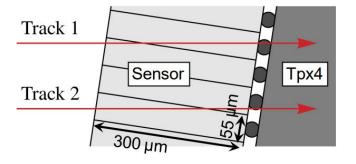

- ➤ For each cluster (~30 pixels):
 - weighted average of ToA using charge as weights
 - cluster charge computed
- Timing resolution dependence on cluster charge:
 - \circ best result: $\sigma_{ToADiffAvg}$ =79 ± 1 ps rms
 - timing resolution after the reference signal contribution has been subtracted: $\sigma_{ToAAvq} = 33 \pm 3 \ ps \ rms$


Timepix4 telescope goals:

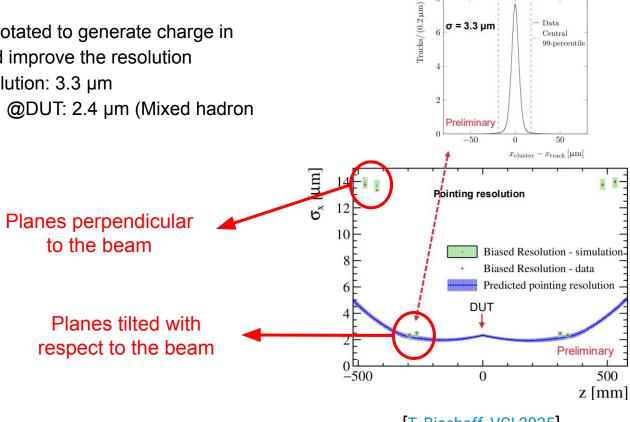
- characterization of sensor + ASIC
- proof of concept of 4D tracker
- pointing resolution of ~2 μm @DUT
- < 50 ps track-time resolution at high rate</p>

Setup:

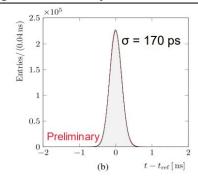

- two arms of 4 planes each
- DUT plane in the center, which can translate and rotate up to grazing angle
- MCP-PMTs for timing reference
- several DUT assemblies (planars and inverted LGAD sensors)

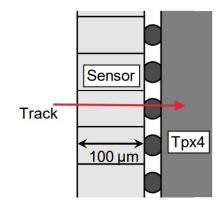


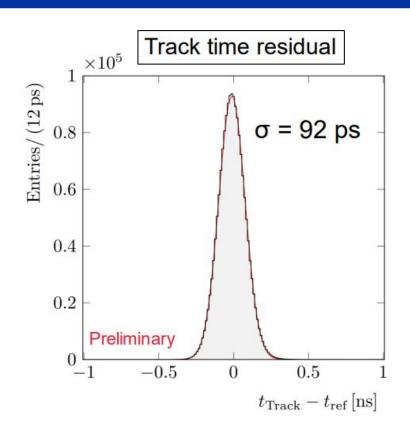
[K. Akiba et al. arXiv:2503.15207v1 [hep-ex] 19 Mar 2025]


- Spatial resolution:
 - four inner planes rotated to generate charge in multiple pixels and improve the resolution
 - single planes resolution: 3.3 μm

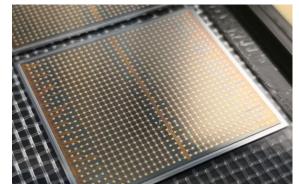
Single assembly spatial residuals



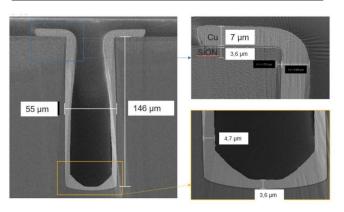

- Spatial resolution:
 - four inner planes rotated to generate charge in multiple pixels and improve the resolution
 - single planes resolution: 3.3 µm
 - pointing resolution @DUT: 2.4 µm (Mixed hadron 0 beam 180 GeV/c)


- Spatial resolution:
 - four inner planes rotated to generate charge in multiple pixels and improve the resolution
 - single planes resolution: 3.3 μm
 - pointing resolution @DUT: 2.4 μm (Mixed hadron beam 180 GeV/c)
- Timing resolution:
 - thin sensor (100 μm) reduce charge sharing
 - perpendicular to the beam maximize signal charge
 - o single plane resolution: 170-196 ps
 - timewalk correction: ~500 ps ⇒ ~220 ps
 - VCO calibration: ~220 ps ⇒ 170 ps

Single assembly time residuals


- Spatial resolution:
 - four inner planes rotated to generate charge in multiple pixels and improve the resolution
 - single planes resolution: 3.3 μm
 - pointing resolution @DUT: 2.4 μm (Mixed hadron beam 180 GeV/c)
- > Timing resolution:
 - o thin sensor (100 μm) reduce time errors
 - perpendicular to the beam maximize signal charge
 - o single plane resolution: 170-196 ps
 - timewalk correction: ~500 ps ⇒ ~220 ps
 - VCO calibration: ~220 ps ⇒ 170 ps
 - o track time resolution: ~92 ps

TSV assemblies status


Through-Silicon Vias status


- Redistribution layer and UBM designed at CERN
- Multisite production (2 European and 1 Asian)
- Devices mounted in Nikhef chipboard and CERN finger board to test
- Timepix4v0 and Timepix4v1 used as setup wafers
 - o procedure validated with tests on these assemblies
- Timepix4v2 and Timepix4v3 used as "gold" wafers
- Received ~300 Timepix4v3 with TSV last week
 - quality tests ongoing

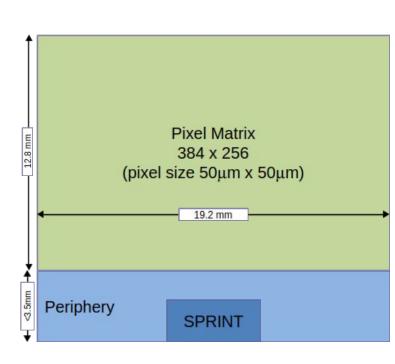
Backside with redistribution layer of Timepix4v3 + N-P Si sensor

Through-Silicon Via section

Courtesy of F. Piernas, J. Alozy et al.

What's next? The Picopix project

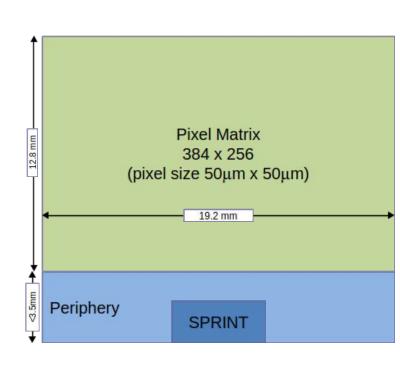
What's next? The Picopix project


- Large-scale hybrid pixel tracking particle detector designed in 28 nm CMOS
- > Promoted by different members, thus suitable to be used in different applications
 - LHCb VELO Upgrade 2 & Fast-Sensor R&D
 - High-precision tracking for HL-LHC
 - Timestamp bins size below 50 ps
 - Radiation-hard hybrid silicon sensors for extreme environments
 - SY-BI Beam Loss Monitoring
 - Bunch-by-bunch beam loss detection
 - Improved diagnostic for LHC and future e⁺e⁻ colliders
 - Medipix3 Collaboration (Medical & Industrial Applications)
 - Hadron therapy beam monitoring in cancer treatment
 - X-ray diffraction and electron microscopy for material science
 - Single-layer Compton cameras for homeland security and SPECT imaging
 - Quantum sensing using entangled particle detection

Timepix4 vs Picopix

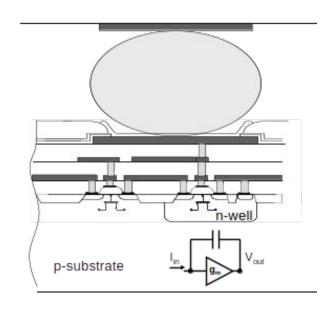
			Timepix4	Picopix	
Tech. node (nm)			TSMC 65	TSMC 28	
Year			2019	2026	
Pixel sixe (µm)			55	50	
# pixels (x x y)			448 x 512	384 x 256	
Sensitive area			6.94 cm ²	2.45 cm ²	
Number of sides for tiling using WB			2 (93.7% active area)	2 (78.5% active area)	
Number of sides for tiling using TSV			4 (99.3% active area)	2 (78.5% active area)	
Front-end		positive (h+)	High Gain (35mV/kh+) Low Gain (20mV/kh+) Logarithmic Gain		
		negative (e-)	High Gain (35mV/ke ⁻) Low Gain (20mV/ke ⁻)	High Gain (35mV/ke ⁻) Low Gain (20mV/ke ⁻)	
Minimum detectable charge			~500 e-	~500 e ⁻	
	Tracking (Event arrival time and/or energy)	Readout	Data-driven (64-bit packet per pixel hit)	Data-driven (72-bit packet per pixel hit)	
		Event Data	TOT & TOA	TOT & TOA & hitmap	
		TOT energy resolution	~1KeV (FWHM Si)	~1KeV (FWHM Si)	
S		TOA bin size	195ps (On-pixel TDC @40MHz)	~35ps (On-pixel TDC @40MHz)	
ode		TOA dynamic range	1.63ms (16b@40MHz)	107s (32b@40MHz)	
on Mc		Max Rate	358x10 ⁶ hits/cm ² /s	1.56x10 ⁹ hits/cm ² /s (@ 24-bit mode)	
Operation Modes		Max Pix Rate	10.8 KHz/pixel	39 KHz/pixel (24-bit Mode)	
	Imaging (Event counting)	Readout	Full Frame-based (Continuous R/W)	Zero-suppressed (with pixel addr) (Sequential R/W)	
		Counter depth	8-bits or 16-bits	12-bits	
		Frame rate	89.2 kfps @8-bit 16x163Gbps 44.8 kfps @16-bit 16x163Gbps	52 kfps @102.8Gbps	
		Max Count Rate	~800 x 109 hits/cm²/s	~800 x 109 hits/cm²/s	
Maximum Readout bandwidth			≤163.84Gbps (16x @10.24 Gbps)	≤102.8Gbps (4x @25.6 Gbps)	
Power consumption			700mW/cm² (nominal) 200mW/cm² (low power)	1W/cm² (nominal)	
Other Paper			https://iopscience.iop.org/article/10 _1088/1748-0221/17/01/C01044	On-pixel clustering On-chip time calibration On-chip packet sorting	

Picopix main features


- Large-scale hybrid pixel tracking particle detector designed in 28 nm CMOS
- > 3-side buttable, 384 x 256 square pixels with 50 μm pitch
- > Time resolution <50 ps accounting ASIC + sensor:
 - expected $\sigma_{\text{sensor}}^2 \sim 40 \text{ ps and } \sigma_{\text{ASIC}}^2 \sim 35 \text{ ps (time bin size)}$

SPRINT: Silicon Photonics
Radiation-tolerant Integrated Transmitter

Picopix main features


- Large-scale hybrid pixel tracking particle detector designed in 28 nm CMOS
- > 3-side buttable, 384 x 256 square pixels with 50 μm pitch
- > Time resolution <50 ps accounting ASIC + sensor:
 - expected $\sigma^2_{\text{sensor}} \sim 40 \text{ ps and } \sigma^2_{\text{ASIC}} \sim 35 \text{ ps (time bin size)}$
- Data reduction, on-chip programmable event clustering, veto, filtering and sorting
- Free running Digital Control Oscillators
 - ufToA: ~30-40 ps bin derived from state of VCO inner nodes
 - o auto-calibrated TDC at each measurement

SPRINT: Silicon Photonics
Radiation-tolerant Integrated Transmitter

Picopix main features

- Large-scale hybrid pixel tracking particle detector designed in 28 nm CMOS
- > 3-side buttable, 384 x 256 square pixels with 50 μm pitch
- ➤ Time resolution <50 ps accounting ASIC + sensor:
 - expected $\sigma^2_{\text{sensor}} \sim 40 \text{ ps and } \sigma^2_{\text{ASIC}} \sim 35 \text{ ps (time bin size)}$
- Data reduction, on-chip programmable event clustering, veto, filtering and sorting
- > Free running Digital Control Oscillators
 - ufToA: ~30-40 ps bin derived from state of VCO inner nodes
 - auto-calibrated TDC at each measurement
- \rightarrow Data driven readout with up to 4 x 25.6 Gbps fast links: up to ~3.84 x 10⁹ events/chip
- Compatibility with different sensors:
 - Planar (Si, Ge, GaAs, CdTe), LGAD, 3D and naked MCP ⇒ Front-end: Charge Sensitive Amplifier
 - SPADs (anode readout at 2 V overvoltage) ⇒ Front-end: Quenching element, regeneration circuit

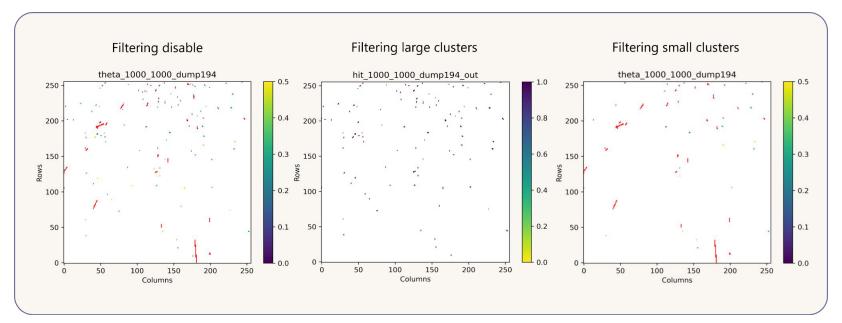
On-pixel clustering and filtering

- Data reduction and veto already at pixel level
 - Bandwidth reduction towards the periphery
 - Power and IR-drop reduction
 - Arbitration logic used in Medipix3/4
 - Transmit only master pixel packet

- Hit-map of pixels around the master
- More advanced on-pixel data filtering:
 - ToA and ToT range
 - o hit-map shape (single pixel, 2, 2x2, 3x3, ...)

Data filtering with 3x3 cluster veto

1	x	x	x	ì
×	h	h	h	х
х	h	М	h	Х
×	h	h	h	х
i	x	x	x	i


Data filtering with 5x5 cluster veto

i	i	x	x	X	i	i	
i	i	h	h	h	i	i	
x	h	h	h	h	h	х	
x	h	h	М	h	h	x	
x	h	h	h	h	h	х	
i	i	h	h	h	i	i	
i	i	х	х	х	i	i	10

On-pixel clustering and filtering

- Data reduction and veto already at pixel level
 - Bandwidth reduction towards the periphery
 - Power and IR-drop reduction
 - Arbitration logic used in Medipix3/4
 - Transmit only master pixel packet

- Hit-map of pixels around the master
- More advanced on-pixel data filtering:
 - ToA and ToT range
 - o hit-map shape (single pixel, 2, 2x2, 3x3, ...)
- ➤ Clustering and filtering architecture validated with simulations in a reduced matrix (256x256 pixels)

Conclusions

- ➤ Timepix4:
 - hybrid pixel detector for tracking and imaging developed by the Medipix4 collaboration
- > Characteristics:
 - o large active area: 6.94 cm²
 - 4-side buttable architecture
 - o ToA: 195 ps bin size
 - o ToT: 1.56 ns bin size (~200 e⁻ rms charge resolution)
 - Readout: up to 160 Gb/s, encoded 64b/66b
- > Several groups in the collaboration are using and characterizing the Timepix4
 - timing resolution, energy resolution and overall performance meeting the expectations
- Near future steps:
 - o characterization with TSV processed wafers and TSV compatible chipboard (NIKHEF)
 - o several DAQs being designed by members of the collaboration
- Picopix improves Timepix4 performance and simplify its use:
 - improved time binning: ~35 ps bin size
 - compatibility also with SPADs
 - o allows to perform: on-pixel data filtering, on-chip time-walk and clock skew correction, on-chip packet sorting

