

**Universiteit Utrecht** 

# Radiative energy loss in a hot QCD medium: from RHIC to LHC

Marta Verweij Utrecht University ALICE mini meeting @ Frascati

#### Introduction / Outlook

- Energy loss due to gluon bremsstrahlung in a hot dense medium.
- What can we learn from measuring R<sub>AA</sub> & comparison to models?
- Formalisms give a different estimation of medium properties when fitting to RHIC R<sub>AA</sub> data (factor ~5 difference in density).
- Estimates for LHC energies.

- In this talk: Apple-to-apple comparison of:
  - Multiple soft scattering approximation (ASW-MS, BDMPS-Z, ...) *Phys.Rev.* D68 014008
  - Opacity Expansions (ASW-SH and DGLV/WHDG rad N=1) Phys.Rev. D68 014008, Nucl.Phys.A784 426

#### Schematic picture of energy loss mechanism in hot dense matter



#### Gluon radiation

- Parton loses energy due to gluon radiation
  - Also in vacuum
  - More in medium
- Gluon spectrum is
   model dependent
- Results in a different jet structure

Gluon radiation spectrum for different energy loss models



#### Energy loss probability

P(ΔE) is generated by a Poisson convolution of the single gluon radiation spectrum:

$$P(\Delta E) = p_0 \delta(\Delta E) + p(\Delta E)$$

- 3 distinct contributions:
  - $p_0$  = discrete weight = probability to not lose any energy =  $e^{-\langle Ngluons \rangle}$
  - $p(\Delta E)$  = continuous energy loss = parton loses  $\Delta E$
  - If  $\Delta E > E$  parton is absorbed by the medium

#### Energy loss probability $P(\Delta E) = p_0 \delta(\Delta E) + p(\Delta E)$

- This results in a outgoing quark spectrum:
  - $x_{r} = 1 \Delta E/E$
  - $-x_{r} = 0$ : Absorbed quarks
  - $-x_{r} = 1$ : No energy loss
- Suppression factor R<sub>7</sub> dominated by:
  - ASW-MS: absorption of partons in the medium
  - OE'S: absorption and soft gluon radiation
- Continuous part of energy loss distribution more relevant for OE's.
- Can we measure this?



## R<sub>A A</sub> at RHIC

- Common input parameter for all models: Temperature
- All models can be fitted to R<sub>AA</sub>.
- Best fit is estimated by modified X<sup>2</sup> analysis.
- Each best fit is has a  $1\sigma$  uncertainty band (shaded area).

|          | If $\tau < \tau_0 \ \hat{q} = \hat{q}_0$ |                   |
|----------|------------------------------------------|-------------------|
|          | $\hat{q}_0~({ m GeV}/fm^2)$              | $T_0 ({ m MeV})$  |
| ASW-MS   | $20.3^{+0.6}_{-5.1}$                     | $973^{+6}_{-90}$  |
| WHDG rad | $5.7^{+0.3}_{-1.9}$                      | $638^{+11}_{-81}$ |
| ASW-SH   | $3.2^{+0.3}_{-0.3}$                      | $524_{-18}^{+17}$ |



Factor 4-5 difference in density estimation between mulitple soft scattering approximation and opacity expansions.

PHENIX data: Phys. Rev. C77, 064907 (2008)

7

#### Geometry of HI collision

- Woods-Saxon profile
- Wounded Nucleon Scaling with optical Glauber
- Medium formation time:  $\tau_0 = 0.6$  fm
- Longitudinal Bjorken Expansion  $1/\tau$
- Freeze out temperature: 150 MeV





#### Medium density profile

- Parton travels through evolving medium
- Parton sees different medium at each step in space and time
- Density of medium decreases as function of space and time





Local qhat as function of space-time coordinate x for different starting points

#### Model input parameters

Multiple soft scattering approximation (ASW-MS): 

$$\begin{split} N_{gluon} &= \int d\omega \frac{dI}{d\omega}(\omega_c, R) = \int d\omega \frac{dI}{d\omega}(\hat{q}, L) \\ \text{*Medium density"} \end{split}$$

$$\bullet \text{ Opacity expansion (GLV, etc.):} \\ N_{gluon} &= \underbrace{\frac{L}{\lambda}}_{\text{*}} \int d\omega \frac{dI}{d\omega}(\mu, L) \\ \text{*scattering centers'} \quad \text{Debye screening mass} \\ \bullet \text{ No qhat for opacity expansions.} \qquad \hat{q} = \frac{\langle q_{\perp}^2 \rangle}{\lambda} \tilde{\lambda} \end{split}$$

How to determine input parameters in an evolving medium? 

- Path average variables which characterize the energy loss.
- Exercise:



 $\langle \Delta E \rangle \propto \hat{q} L^2 \propto \omega_c$ 

- Parton is created at  $x_0$  and travels radially through the center of the medium until it leaves the medium or freeze out has taken place.



- Now: Partons in all directions from all positions
- Medium characterized by typical gluon energy  $\omega_{\rm c}$  and path length L



Different treatment of large angle radiation cut-off: qperp<E

- Medium characterized by typical gluon energy  $\omega_{\rm c}$  and path length L

 $\langle \Delta E \rangle \propto \hat{q} L^2 \propto \omega_c$ 



- Brick isolines for different values of typical suppression R<sub>7</sub>
- $R_{AA}$  is a superposition of a range of typical suppressions.



#### Surviving partons

- WHDG probes deeper into medium.
- WHDG more surviving partons  $\rightarrow$  more fractional energy loss.
- Measure back-to-back hadrons could give a different picture.



### Why measure $I_{AA}$ ?

- Trigger to larger parton p<sub>t</sub>
- Bias associated particle towards
   longer path length
- Probe different part of medium
- Probe different energy loss
   probability distribution



## L<sub>trig</sub> vs L<sub>assoc</sub>

- For  $R_{AA}$  and  $I_{AA}$  different mean path length.
- P<sub>t</sub> Trigger > P<sub>t</sub> Assoc
- Triggers bias towards smaller L
- Associates bias towards longer L



 $R_{AA}$  vs  $I_{AA}$ 

• What is the difference between  $R_{AA}$  and  $I_{AA}$ ?





## $R_{AA}$ at LHC

- Assuming same medium density as at RHIC.
- Parton p<sub>t</sub> spectrum for LHC flatter than at RHIC.
- Higher parton momenta than at RHIC.
- Different model dependence on p<sub>t</sub> for R<sub>AA</sub>



 $R_{AA}$  at ALICE



•  $R_{AA}$  PHENIX  $\pi^0$  and ALICE  $h^{+-}$  not so different...

#### Models + ALICE R<sub>AA</sub>

- Models *tuned* to PHENIX  $\pi^0 R_{AA}$  do not describe data very well.
- Roughly: 2-3 times larger qhat at LHC than at RHIC





**Opacity expansion** 

#### Summary

- Different energy loss models give different results in a brick and fitting to RHIC data.
- Opacity expansion probes deeper into the medium different *surface bias*.
- $P(\Delta E)$  not trivial to recover from indirect measurement.
- If density of the medium is not too large, clear  $p_{T}$  dependence of radiative energy loss for LHC.

– Done, steeper rise of  $R_{AA}$  with  $p_T$  than expected.