Spectroscopy and Physics of the Beautiful Tetraquarks

Ahmed Ali (INFN Super-B Workshop, Frascati, Tuesday, 05.04.2011)

Overview

- Tetraquarks and Diquarks: Introduction
- Experimental evidence of exotic states and interpretations
- Calculation of tetraquark masses $M_{[bq][\bar{b}\bar{q'}]}$
- Production & decays of $J^{PC} = 1^{--}$ tetraquarks $Y_{[bq][\bar{b}\bar{q}]}$
- Search for $Y_{[bq][\bar{b}\bar{q}]}$ in the BaBar R_b energy scan
- Interpretation of $Y_b(10890)$ as a tetraquark and analysis of the Belle data
- Summary and outlook

Tetraquarks and Diquarks: Introduction

A basic question in hadron physics: Are there additional structures beyond the (qq̄) mesons and (qqq) baryons?

- If not, why not?
- If yes, what are they? and where are they?
- In this talk, we argue that tetraquarks (bound states of diquarks antidiquarks) exist in nature
- We outline the phenomenology; analyse current data to search for them and suggest future experiments

Tetraquark constituents

Tetraquarks consist of 4 quarks

Tetraquark constituents

paired as colored diquarks [qq] and antidiquarks $[\bar{q}\bar{q}]$

Tetraquark constituents

bound by QCD forces in a colorless hadron: tetraquark

Two different 4-quark hadrons, seemingly similar

Two different 4-quark hadrons, seemingly similar
 Tetraquarks:

- Diquarks and Antidiquarks are colored
- ⇒ Strongly bound by QCD forces

Two different 4-quark hadrons, seemingly similar Tetraquarks:

- Diquarks and Antidiquarks are colored
- ⇒ Strongly bound by QCD forces
- Hadronic molecules:
 - Bound states of uncolored mesons
 - \Rightarrow Bound by pionic exchanges

Two different 4-quark hadrons, seemingly similar
 Tetraquarks:

- Diquarks and Antidiquarks are colored
- ⇒ Strongly bound by QCD forces
- Hadronic molecules:
 - Bound states of uncolored mesons
 - \Rightarrow Bound by pionic exchanges

Very different phenomenology!

One-gluon exchange model ^[R. Jaffe (2005)]
 Color factor determines binding:
 Negative sign ⇒ Attraction

One-gluon exchange model ^[R. Jaffe (2005)]
 Color factor determines binding:
 Negative sign ⇒ Attraction

Quarks in diquark transform as:

 $\mathbf{3}\otimes\mathbf{3}$ = $\mathbf{\overline{3}}\oplus\mathbf{6}$

One-gluon exchange model ^[R. Jaffe (2005)]
 Color factor determines binding:
 Negative sign ⇒ Attraction

Quarks in diquark transform as:

 $\mathbf{3}\otimes\mathbf{3}$ = $\mathbf{\overline{3}}\oplus\mathbf{6}$

■ *qq* bound state color factor:

$$t_{ij}^{a} t_{kl}^{a} = -\frac{2}{3} \underbrace{(\delta_{ij} \delta_{kl} - \delta_{il} \delta_{kj})/2}_{\text{antisymmetric: projects } \mathbf{\bar{3}}} + \frac{1}{3} \underbrace{(\delta_{ij} \delta_{kl} + \delta_{il} \delta_{kj})/2}_{\text{symmetric: projects } \mathbf{6}}$$

Lattice simulations of diquarks with light quarks ^[Alexandrou et al., PRL 97:222002 (2006)]

Lattice simulations of diquarks with light quarks ^[Alexandrou et al., PRL 97:222002 (2006)]

Binding for "good" spin 0 diquarks

Lattice simulations of diquarks with light quarks ^[Alexandrou et al., PRL 97:222002 (2006)]

Binding for "good" spin 0 diquarks
No binding for "bad" spin 1 diquarks

Lattice simulations of diquarks with light quarks ^[Alexandrou et al., PRL 97:222002 (2006)]

■ Binding for "good" spin 0 diquarks
 ■ No binding for "bad" spin 1 diquarks
 Spin decoupling in Heavy-Quark-Limit;
 ⇒ "Bad" diquarks [bq] should bind

Evidence for diquarks in lattice QCD

Calculation of diquark correlation strength in a nucleon taken as a diquark-quark system

Evidence for diquarks in lattice QCD

Calculation of diquark correlation strength in a nucleon taken as a diquark-quark system

■ Decreasing diquark distance ⇒ Increasing strength for "good" diquarks

Evidence for diquarks in lattice QCD

Calculation of diquark correlation strength in a nucleon taken as a diquark-quark system

■ Decreasing diquark distance ⇒ Increasing strength for "good" diquarks **Experimental evidence of exotic states and interpretations**

- Experimental evidence exists for "Exotic States" from e^+e^- colliders and Tevatron
- Lost tribes of Charmonium? [Quigg (2004)]
- $c\bar{c}g$ Hybrids? [Close & Page (2005); Kou & Pene (2005)]
- $D\bar{D}^{(*)}$ Molecules? [Tornquist (2004); Braaten & Kusonoki (2004); Swanson (2004); Voloshin (2004); Liu et al. (2005); Rosner (2007); ...]
- **Tetraquarks** $[cq][\bar{c}\bar{q}]$? [Maiani et al.; Polosa et al. (2004 2010)]
- Recent Review on Heavy Quarkonium: [Brambilla et al., EPJ, C71, 1534 (2011)]

Exotic states

Belle observations ^{[A. Zupanc [Belle], arXiv:0910.3404 (2009)]} (updated)

State	M (MeV)	Γ (MeV)	$_{J}PC$	Decay Modes	Production Modes	Also observed by
					e^+e^- (ISR)	
$\phi(2170)$	2175 ± 15	61 ± 18	$1^{}$	$\phi f_{0}(980)$	$J/\psi \to \eta Y_S(2175)$	BaBar, BESII
				$\pi^+\pi^- J/\psi$,		BaBar
X(3872)	3871.5 ± 0.2	< 2.2	$1^{++}/2^{-+}$	$\gamma J/\psi, D \bar{D^*}$	$B \rightarrow KX(3872), p\bar{p}$	CDF, D0,
X(3915)	3914 ± 4	28 ± 10	$0/2^{++}$	$\omega J / \psi$	$\gamma\gamma \rightarrow X(3915)$	
$\chi_{c2}(2P)$	3929 ± 5	29 ± 10	2^{++}	$D \bar{D}$	$\gamma\gamma \rightarrow Z(3940)$	
				$D\bar{D^*}$ (not $D\bar{D}$		
X(3940)	3942 ± 9	37 ± 17	0?+	or $\omega J/\psi$)	$e^+e^- \rightarrow J/\psi X(3940)$	
Y(4008)	$4008 {+121 \atop -49}$	226 ± 97	1	$\pi^+\pi^-J/\psi$	$e^+e^-(ISR)$	
X(4160)	4156 ± 29	139^{+113}_{-65}	0?+	$D^* \bar{D^*}$ (not $D\bar{D}$)	$e^+e^- \rightarrow J/\psi X(4160)$	
Y(4260)	4263 ± 5	108 ± 14	$1^{}$	$\pi^+\pi^-J/\psi$	$e^+e^-(ISR)$	BaBar, CLEO
Y(4360)	4353 ± 11	96 ± 12	$1^{}$	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	BaBar
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$\Lambda_c^+ \Lambda_c^-$	$e^+e^-(ISR)$	
Y(4660)	4664 ± 12	48 ± 15	$1^{}$	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	
Z(4050)	4051 + 24 - 23	82^{+51}_{-29}	?	$\pi^{\pm}\chi_{c1}$	$B \to KZ^{\pm}(4050)$	
Z(4250)	4248 + 185 - 45	$177 + 320 \\ -72$?	$\pi^{\pm}\chi_{c1}$	$B \to KZ^{\pm}(4250)$	
Z(4430)	4433 ± 5	$45^{+35^{-}}_{-18}$?	$\pi^{\pm}\psi'$	$B \to KZ^{\pm}(4430)$	
$Y_b(10890)$	$10,888.4 \pm 3.0$	$30.7 \substack{+8.9 \\ -7.7}$	1	$\pi^+\pi^-\Upsilon(1,2,3S)$	$e^+e^- \rightarrow Y_b$	

Exotic states

Belle observations ^{[A. Zupanc [Belle], arXiv:0910.3404 (2009)]} (updated)

State	M (MeV)	Γ (MeV)	$_{J}PC$	Decay Modes	Production Modes	Also observed by
					e^+e^- (ISR)	
$\phi(2170)$	2175 ± 15	61 ± 18	$1^{}$	$\phi f_{0}(980)$	$J/\psi \rightarrow \eta Y_{\mathcal{S}}(2175)$	BaBar, BESII
				$\pi^+\pi^- J/\psi$,		BaBar
X(3872)	3871.5 ± 0.2	< 2.2	$1^{++}/2^{-+}$	$\gamma J/\psi, D \bar{D^*}$	$B \rightarrow KX(3872), p\bar{p}$	CDF, D0,
X(3915)	3914 ± 4	28 ± 10	$0/2^{++}$	$\omega J/\psi$	$\gamma\gamma \rightarrow X(3915)$	
$\chi_{c2}(2P)$	3929 ± 5	29 ± 10	2^{++}	$Dar{D}$	$\gamma\gamma \rightarrow Z(3940)$	
				$D\bar{D^*}$ (not $D\bar{D}$		
X(3940)	3942 ± 9	37 ± 17	$0^{?+}$	or $\omega J/\psi$)	$e^+e^- \rightarrow J/\psi X(3940)$	
Y(4008)	$4008 {+121 \atop -49}$	226 ± 97	1	$\pi^+\pi^-J/\psi$	$e^+e^-(ISR)$	
X(4160)	4156 ± 29	139^{+113}_{-65}	$0^{?+}$	$D^* \bar{D^*}$ (not $D\bar{D}$)	$e^+e^- \rightarrow J/\psi X(4160)$	
Y(4260)	4263 ± 5	108 ± 14	$1^{}$	$\pi^+\pi^- J/\psi$	$e^+e^-(ISR)$	BaBar, CLEO
Y(4360)	4353 ± 11	96 ± 12	$1^{}$	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	BaBar
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$\Lambda_c^+ \Lambda_c^-$	$e^+e^-(ISR)$	
Y(4660)	4664 ± 12	48 ± 15	$1^{}$	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	
Z(4050)	4051 + 24 - 23	82^{+51}_{-29}	?	$\pi^{\pm}\chi_{c1}$	$B \to KZ^{\pm}(4050)$	
Z(4250)	4248 + 185 - 45	$177 \substack{+320 \\ -72}$?	$\pi^{\pm}\chi_{c1}$	$B \to KZ^{\pm}(4250)$	
Z(4430)	4433 ± 5	$45^{+35^{-}}_{-18}$?	$\pi^{\pm}\psi'$	$B \to KZ^{\pm}(4430)$	
$Y_{1}(10800)$	$10,888.4 \pm 3.0$	30.7 + 8.9 - 7.7	1	$\pi^+\pi^-\Upsilon(1,2,3S)$	e e Yo	

tetraquark candidate with a $b\bar{b}$ pair (... more later)

Singlet P states: $h_c(1P)$, $h_b(1P)$, $h_b(2P)$

Tetraquark Physics, Frascati, April 5, 2011 - p.11

Discovery of $h_c(1P)$ in $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$ and energy depen-

dence

$h_b(1P)$ and $h_b(2P)$

Tetraquark Physics, Frascati, April 5, 2011 – p.13

Evidence for $h_b(1P)$ **in the decay** $\Upsilon(3S) \rightarrow \pi^0 h_b(1P)$ **Yield** as a function of the assumed h_b mass: [BaBar-PUB-10/032]

 Search for h_b(1P) spin-singlet partner of χ_b(1P): e⁺e⁻ → Υ(3S) → π⁰h_b(1P), h_b(1P) → γη_b(1S)
 𝔅(Υ(3S) → π⁰h_b(1P)) × 𝔅(h_b(1P) → γη_b) = (3.7±1.1±0.7) × 10⁻⁴
 Consistent with theoretical estimate: 4 × 10⁻⁴ Godfrey (2005)

Observation of $h_b(1P)$ **and** $h_b(2P)$ **bottomonium states** $MM(\pi^+\pi^-)$ spectrum: [Adachi *et al.* (Belle), arxiv:1103.3419]

Search for $e^+e^- \to h_b(nP)\pi^+\pi^-$ near the $\Upsilon(5S)$:

 $M[h_b(1P)] = (9898.25 \pm 1.06^{+1.03}_{-1.07}) \text{ MeV}; \quad M[h_b(2P)] = (10259.76 \pm 0.64^{+1.43}_{-1.03}) \text{ MeV}$

 $\frac{\sigma(e^+e^- \to h_b(1P)\pi^+\pi^-)}{\sigma(e^+e^- \to \Upsilon(2S)\pi^+\pi^-)} = 0.407 \pm 0.079^{+0.043}_{-0.070}; \quad \frac{\sigma(e^+e^- \to h_b(2P)\pi^+\pi^-)}{\sigma(e^+e^- \to \Upsilon(2S)\pi^+\pi^-)} = 0.78 \pm 0.09^{+0.22}_{-0.10}$ $\blacksquare \sigma(e^+e^- \to \Upsilon(2S)\pi^+\pi^-) = 4.82^{+0.77}_{-0.62} \text{ pb [Belle, PRD 82, 091106]}$

All X-sections are larger by 2 orders of magnitude compared to the QCD multipole estimates!

Calculation of tetraquark masses $M_{[bq][\overline{b}q']}$

- Constituent Diquark Hamiltonian Model [N. Drenska, R. Faccini, A.D. Polosa, PLB 669 (2008) 160]
- Spectroscopic estimates presented here are based on [A. A., C. Hambrock, I. Ahmed and J. Aslam, PLB 684, 28 (2010)]
- For similar estimaes, see also [N. Drenska et al., arXiv:1006.2741; D. Ebert et al., Mod. Phys. Lett. A 24, 567 (2009); Z.G. Wang, Eur. Phys. J. C 67, 411 (2010)]

Diquarks

Interpolating diquark operators:

"good":
$$0^{+} \quad Q_{i\alpha} = \epsilon_{\alpha\beta\gamma}(\bar{b}_{c}^{\beta}\gamma_{5}q_{i}^{\gamma} - \bar{q}_{i_{c}}^{\beta}\gamma_{5}b^{\gamma})$$

"bad": $1^{+} \quad \vec{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma}(\bar{b}_{c}^{\beta}\vec{\gamma}q_{i}^{\gamma} + \bar{q}_{i_{c}}^{\beta}\vec{\gamma}b^{\gamma})$
 $\alpha, \beta, \gamma: SU(3)_{C}$ indices

Diquarks

Interpolating diquark operators:

"good":
$$0^+ \quad Q_{i\alpha} = \epsilon_{\alpha\beta\gamma}(\bar{b}_c^\beta\gamma_5 q_i^\gamma - \bar{q}_{i_c}^\beta\gamma_5 b^\gamma)$$

"bad": $1^+ \quad \vec{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma}(\bar{b}_c^\beta\vec{\gamma}q_i^\gamma + \bar{q}_{i_c}^\beta\vec{\gamma}b^\gamma)$
 $\alpha, \beta, \gamma: SU(3)_C \text{ indices}$

 \Rightarrow NR limit: States parametrized by Pauli matrices :

"good":
$$0^+ \Gamma^0 = \frac{\sigma_2}{\sqrt{2}}$$

"bad": $1^+ \vec{\Gamma} = \frac{\sigma_2 \vec{\sigma}}{\sqrt{2}}$

Tetraquark states

Characterized by the diquark and antidiquark spins s_Q and $s_{\bar{Q}}$ and the tetraquark total angular momentum J

$$\left|Y_{[bq]}\right\rangle = \left|s_{\mathcal{Q}}, s_{\bar{\mathcal{Q}}}; J\right\rangle$$

 \Rightarrow Tetraquark matrix representation:

Hamiltonian

States need to diagonalize Hamiltonian:

 $H = 2m_{Q} + H_{SS}^{(qq)} + H_{SS}^{(q\bar{q})} + H_{SL} + H_{LL}$
States need to diagonalize Hamiltonian:

with

States need to diagonalize Hamiltonian:

States need to diagonalize Hamiltonian:

 $H = 2m_{\mathcal{Q}} + H_{SS}^{(q\bar{q})} + H_{SS} + H_{LL}$ with LS coupling $H_{SS}^{(q\bar{q})} = 2(\mathcal{K}_{bq})_{\bar{3}}[(\mathbf{S}_{b} \cdot \mathbf{S}_{q}) + (\mathbf{S}_{\bar{b}} \cdot \mathbf{S}_{\bar{q}})]$ $H_{SS}^{(q\bar{q})} = 2(\mathcal{K}_{b\bar{q}})(\mathbf{S}_{b} \cdot \mathbf{S}_{\bar{q}} + \mathbf{S}_{\bar{b}} \cdot \mathbf{S}_{q})$ $+2\mathcal{K}_{b\bar{b}}(\mathbf{S}_{b} \cdot \mathbf{S}_{\bar{b}}) + 2\mathcal{K}_{q\bar{q}}(\mathbf{S}_{q} \cdot \mathbf{S}_{\bar{q}})$ $H_{SL} = 2A_{\mathcal{Q}}(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{L} + \mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{L})$

States need to diagonalize Hamiltonian:

with $H = 2m_{\mathcal{Q}} + H_{SS}^{(q\bar{q})} + H_{SS} + H_{LL}$ L coupling $H_{SS}^{(q\bar{q})} = 2(\mathcal{K}_{bq})_{\bar{3}}[(\mathbf{S}_{b} \cdot \mathbf{S}_{q}) + (\mathbf{S}_{\bar{b}} \cdot \mathbf{S}_{\bar{q}})]$ $H_{SS}^{(q\bar{q})} = 2(\mathcal{K}_{b\bar{q}})(\mathbf{S}_{b} \cdot \mathbf{S}_{\bar{q}} + \mathbf{S}_{\bar{b}} \cdot \mathbf{S}_{q})$ $+ 2\mathcal{K}_{b\bar{b}}(\mathbf{S}_{b} \cdot \mathbf{S}_{\bar{b}}) + 2\mathcal{K}_{q\bar{q}}(\mathbf{S}_{q} \cdot \mathbf{S}_{\bar{q}})$

 $H_{SL} = 2A_{\mathcal{Q}}(\mathbf{S}_{\mathcal{Q}} \cdot \mathbf{L} + \mathbf{S}_{\bar{\mathcal{Q}}} \cdot \mathbf{L})$ $H_{LL} = B_{\mathcal{Q}} \frac{L_{\mathcal{Q}\bar{\mathcal{Q}}}(L_{\mathcal{Q}\bar{\mathcal{Q}}} + 1)}{2}$

\bullet [$\bar{b}\bar{q}$][bq] state: $\left|1^{++}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|0_{\mathcal{Q}}, 1_{\bar{\mathcal{Q}}}; 1_{J}\right\rangle + \left|1_{\mathcal{Q}}, 0_{\bar{\mathcal{Q}}}; 1_{J}\right\rangle\right)$ Tetraquark Physics, Frascati, April 5, 2011 – p.20

• $[\bar{b}\bar{q}][bq]$ state:

$$\left|1^{++}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|0_{\mathcal{Q}}, 1_{\bar{\mathcal{Q}}}; 1_{J}\right\rangle + \left|1_{\mathcal{Q}}, 0_{\bar{\mathcal{Q}}}; 1_{J}\right\rangle\right)$$

• Mass $M(1^{++}) = \langle 1^{++} | H | 1^{++} \rangle$:

• $[\bar{b}\bar{q}][bq]$ state:

$$\left|1^{++}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|0_{\mathcal{Q}}, 1_{\bar{\mathcal{Q}}}; 1_{J}\right\rangle + \left|1_{\mathcal{Q}}, 0_{\bar{\mathcal{Q}}}; 1_{J}\right\rangle\right)$$

• Mass $M(1^{++}) = \langle 1^{++} | H | 1^{++} \rangle$: $M(1^{++}) = 2m_{[bq]} - (\mathcal{K}_{bq})_{\bar{3}} + \frac{1}{2}\mathcal{K}_{q\bar{q}} - \mathcal{K}_{b\bar{q}} + \frac{1}{2}\mathcal{K}_{b\bar{b}}$

• $[\bar{b}\bar{q}][bq]$ state:

$$\left|1^{++}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|0_{\mathcal{Q}}, 1_{\bar{\mathcal{Q}}}; 1_{J}\right\rangle + \left|1_{\mathcal{Q}}, 0_{\bar{\mathcal{Q}}}; 1_{J}\right\rangle\right)$$

• Mass
$$M(1^{++}) = \langle 1^{++} | H | 1^{++} \rangle$$
:

$$M(1^{++}) = 2m_{[bq]} - (\mathcal{K}_{bq})_{\bar{3}} + \frac{1}{2}\mathcal{K}_{q\bar{q}} - \mathcal{K}_{b\bar{q}} + \frac{1}{2}\mathcal{K}_{b\bar{b}}$$

Example parameters from known hadron spectrum:

[A. A., C. Hambrock, I. Ahmed and M. Aslam, Phys. Lett. B 684, 28 (2010)]

One expects 40 tetraquark states of the type $[bq][\bar{b}\bar{q}]$ (q = u, d, c, s), with well-defined $J^{PC} = 0^{++}, 1^{++}, 1^{+-}, 1^{--}, 2^{++}$ and 10 states of the type $[bs][\bar{b}\bar{d}]$ with $J^P = 0^+, 1^+, 1^-, 2^+$ in the mass range 10.3 - 14.1 GeV!

- One expects 40 tetraquark states of the type $[bq][b\bar{q}]$ (q = u, d, c, s), with well-defined $J^{PC} = 0^{++}, 1^{++}, 1^{+-}, 1^{--}, 2^{++}$ and 10 states of the type $[bs][\bar{b}\bar{d}]$ with $J^P = 0^+, 1^+, 1^-, 2^+$ in the mass range 10.3 - 14.1 GeV!
- Of these 16 have $J^{PC} = 1^{--}$, having masses from 10.890 GeV, called $Y_b(10890)$, to about 14.1 GeV, $Y_{[bc][\bar{b}\bar{c}]}(14030)$, which can be directly produced in e^+e^- annihilation at the *B*/Super-*B* factories

- One expects 40 tetraquark states of the type $[bq][\bar{b}\bar{q}]$ (q = u, d, c, s), with well-defined $J^{PC} = 0^{++}, 1^{++}, 1^{+-}, 1^{--}, 2^{++}$ and 10 states of the type $[bs][\bar{b}\bar{d}]$ with $J^P = 0^+, 1^+, 1^-, 2^+$ in the mass range 10.3 - 14.1 GeV!
- Of these 16 have $J^{PC} = 1^{--}$, having masses from 10.890 GeV, called $Y_b(10890)$, to about 14.1 GeV, $Y_{[bc][\bar{b}\bar{c}]}(14030)$, which can be directly produced in e^+e^- annihilation at the *B*/Super-*B* factories
- Hard to find due to
 - Large decay widths and mixing with ordinary hadrons
 - Small production cross sections
 - Not high enough energy of the current *B* factories

- One expects 40 tetraquark states of the type $[bq][\bar{b}\bar{q}]$ (q = u, d, c, s), with well-defined $J^{PC} = 0^{++}, 1^{++}, 1^{+-}, 1^{--}, 2^{++}$ and 10 states of the type $[bs][\bar{b}\bar{d}]$ with $J^P = 0^+, 1^+, 1^-, 2^+$ in the mass range 10.3 - 14.1 GeV!
- Of these 16 have $J^{PC} = 1^{--}$, having masses from 10.890 GeV, called $Y_b(10890)$, to about 14.1 GeV, $Y_{[bc][\bar{b}\bar{c}]}(14030)$, which can be directly produced in e^+e^- annihilation at the *B*/Super-*B* factories
- Hard to find due to
 - Large decay widths and mixing with ordinary hadrons

Rut.

- Small production cross sections
- Not high enough energy of the current *B* factories

Mass spectrum of the $[bq][\overline{b}\overline{q}]$ tetraquarks

Heavy-light $[bq][\bar{b}\bar{q}]$ (q = u, d) tetraquarks

Mass spectrum of the $[bq][\overline{b}\overline{q}]$ tetraquarks

Mass spectrum of the $[bq][\overline{b}\overline{q}]$ **tetraquarks**

Mass spectrum of the $[bq][b\bar{q}]$ **tetraquarks**

Heavy-light $[bq][b\bar{q}]$ (q = u, d) tetraquarks $J^{PC} = 1^{--}$ 11320 \Rightarrow can be produced in $\Lambda_b \overline{\Lambda_h}$ $\bar{1}1\bar{2}2\bar{7}(1^{--})$ e^+e^- annihilation **T**wo of them in the range of BaBar and Belle $E_{\rm CM}$ 10845 • $Y_{b}^{(1)}$ only composed B^*B BBof "good" diquarks $B \bar{B}$ $\overline{10528(0^{++})}$ 10 527 (10 504 (1+- \Rightarrow This is Belle's 10 385 (0 10370 0^{++} $Y_b(10890)!$, $\Gamma_{tot} \approx 40 \text{ MeV}$

 $10520(2^{++})$

 $11133(1^{--})$

10 890 (1-

Isospin breaking

• $Y_b^{(1)}$ mass eigenstates:

$$Y_{[b,l]} = \cos \theta Y_{[bu]} + \sin \theta Y_{[bd]}$$
$$Y_{[b,h]} = -\sin \theta Y_{[bu]} + \cos \theta Y_{[bd]}$$

 Isospin mass breaking: M(Y_[b,h]) - M(Y_[b,l]) = (7 ± 3) cos(2θ) MeV

 Effective diquark charge:

$$Q_{Y_{[b,l]}} = \frac{1}{3}\cos\theta - \frac{2}{3}\sin\theta$$
$$Q_{Y_{[b,h]}} = -\frac{1}{3}\sin\theta - \frac{2}{3}\cos\theta$$

 $\theta = -45^{\circ} \Rightarrow$ Isospin eigenstates

■ Van Royen-Weisskopf formula $\Rightarrow \Gamma(1^{--} e^+ e^-)$

Assumption: Point-like diquarks

[A. A., C. Hambrock and S. Mishima, PRL 106:092002 (2011)]

■ Van Royen-Weisskopf formula $\Rightarrow \Gamma(1^{--} e^+ e^-)$

Assumption: Point-like diquarks

[A. A., C. Hambrock and S. Mishima, PRL 106:092002 (2011)]

$$\Gamma_{ee}(Y_{[b,l/h]}) = \frac{24\alpha^2 Q_{[b,l/h]}^2}{M_{Y_{[b,l/h]}}^4} \kappa^2 \left| R_{11}^{(1)}(0) \right|^2$$

■ Van Royen-Weisskopf formula $\Rightarrow \Gamma(1^{--} e^+ e^-)$

Assumption: Point-like diquarks

[A. A., C. Hambrock and S. Mishima, PRL 106:092002 (2011)]

$$\Gamma_{ee}(Y_{[b,l/h]}) = \frac{24\alpha^2 Q_{[b,l/h]}^2}{M_{Y_{[b,l/h]}}^4} \kappa^2 \left| R_{11}^{(1)}(0) \right|^2$$

 $\Rightarrow \text{Suppressed } \mathcal{O}(10) \text{ vs bottomonia} \\\Rightarrow \text{Production ratio: } \Gamma_{Y_{[b,l]}} / \Gamma_{Y_{[b,h]}} = \left(\frac{1-2\tan\theta}{2+\tan\theta}\right)^2$

Fit to BaBar data

[A. A., C. Hambrock, I. Ahmed and J. Aslam, PLB 684, 28 (2010)]

Tetraquark Physics, Frascati, April 5, 2011 - p.27

BaBar fit

Model function : $\sigma(e^+e^- \rightarrow b\bar{b}) = |A_{nr}|^2 + |A_{nr}|^2$

 $\sigma(e^+e^- \to b\bar{b}) = |A_{nr}|^2 + \left|A_r + A_{10860}e^{i\phi_{10860}}BW(M_{10860}, \Gamma_{10860}) + A_{11020}e^{i\phi_{11020}}BW(M_{11020}, \Gamma_{11020})\right|^2$

 $\chi^2/d.o.f. \approx 2$ [Phys. Rev. Lett. **102**, 012001 (2009)]

BaBar fit

$$\chi^2$$
/d.o.f. = 88/67

Model function modified :

$$\sigma(e^+e^- \to b\bar{b}) = |A_{nr}|^2 + \left| A_r + A_{10860}e^{i\phi_{10860}}BW(M_{10860}, \Gamma_{10860}) + A_{11020}e^{i\phi_{11020}}BW(M_{11020}, \Gamma_{11020}) + A_{Y_{[b,l]}}e^{i\phi_{Y_{[b,l]}}}BW(M_{Y_{[b,l]}}, \Gamma_{Y_{[b,l]}}) + A_{Y_{[b,h]}}e^{i\phi_{Y_{[b,h]}}}BW(M_{Y_{[b,h]}}, \Gamma_{Y_{[b,h]}}) \right|^2$$

BaBar fit

$$\chi^2$$
/d.o.f. = 88/67

Model function modified :

$$\sigma(e^{+}e^{-} \rightarrow b\bar{b}) = |A_{nr}|^{2} + \left|A_{r} + A_{10860}e^{i\phi_{10860}}BW(M_{10860},\Gamma_{10860}) + A_{11020}e^{i\phi_{11020}}BW(M_{11020},\Gamma_{11020}) + A_{Y_{[b,l]}}e^{i\phi_{Y_{[b,l]}}}BW(M_{Y_{[b,l]}},\Gamma_{Y_{[b,l]}}) + A_{Y_{[b,h]}}e^{i\phi_{Y_{[b,h]}}}BW(M_{Y_{[b,h]}},\Gamma_{Y_{[b,h]}})\right|^{2}$$

	M[MeV]	$\Gamma[MeV]$	φ [rad.]
$\Upsilon(5S)$	10864 ± 5	46 ± 8	1.3 ± 0.3
$\Upsilon(6S)$	11007 ± 0.3	40 ± 2	0.88 ± 0.06
$Y_{[b,l]}$	$10900 - \Delta M/2 \pm 2$	28 ± 2	1.3 ± 0.2
$Y_{[b,h]}$	$10900 + \Delta M/2 \pm 2$	28 ± 2	1.9 ± 0.2

 $\Delta M = 5.6 \pm 2.8 \text{ MeV}$ $\Gamma_{ee}(Y_{[b,l]}) = 45 \pm 15 \text{ eV}$ $\Gamma_{ee}(Y_{[b,h]}) = 40 \pm 15 \text{ eV}$

Structure seen in inclusive BaBar data

Structure seen in inclusive BaBar data

- But not conclusive:
 - Suppression $\mathcal{O}(10)$ vs $\Upsilon(5S)$
 - Mass splitting \approx BaBar binning
 - Overlapping resonances
 - \Rightarrow Theoretically hard to handle

Structure seen in inclusive BaBar data

- But not conclusive:
 - Suppression $\mathcal{O}(10)$ vs $\Upsilon(5S)$
 - Mass splitting \approx BaBar binning
 - Overlapping resonances
 - \Rightarrow Theoretically hard to handle

Exclusive data more promising

Exclusive Belle data

Observed anomaly: Explanation

Enigmatic Belle data

Enigmatic Belle data

Enigmatic Belle data

Typical $\Upsilon(nS) \to \Upsilon(mS)\pi\pi$ decays:

[A. Sokolov *et al*. (2009)]

Typical $\Upsilon(nS) \to \Upsilon(mS)\pi\pi$ decays:

[A. Sokolov *et al*. (2009)]

 $\blacksquare Zweig forbidden process \implies Small cross sections$

Typical $\Upsilon(nS) \to \Upsilon(mS)\pi\pi$ decays:

[A. Sokolov *et al*. (2009)]

Zweig forbidden process => Small cross sections
 Up to now good description for bottomonia

• Typical $\Upsilon(nS) \to \Upsilon(mS)\pi\pi$ decays:

[A. Sokolov *et al*. (2009)]

Zweig forbidden process ⇒ Small cross sections
Up to now good description for bottomonia
Fails for Y(5S)
⇒ Observed state might be 1⁻⁻ tetraquark

Tetraquark Explanation of the Belle anomaly

Dynamical model to calculate $\sigma(e^+e^- \rightarrow Y_b \rightarrow \Upsilon(1S)PP')$ $PP' = \pi^+\pi^-, K^+K^-, \eta\pi^0$

Fit to the $\Upsilon(1S)\pi^+\pi^-$ Belle spectra

 \Rightarrow Testable predictions for $\Upsilon(1S)(K^+K^-, \eta\pi^0)$

[A. A., C. Hambrock and J. Aslam, PRL 104:162001 (2010)] [A. A., C. Hambrock and S. Mishima, PRL 106:092002 (2011)]

Continuum contribution

■ Zweig allowed tetraquark continuum^[Brown et al. (1975)] :

Continuum contribution

Zweig allowed tetraquark continuum^[Brown et al. (1975)]

Continuum contribution

Zweig allowed tetraquark continuum^[Brown et al. (1975)]

3 diff. terms

And the resonant contributions

Continuum

Resonance

Breit-Wigner shape for resonance:

$$\frac{1}{(q^2 - M^2) + iM\Gamma}$$

 $q^2 \equiv M_{PP'}^2 \Rightarrow$ Resonances show in $M_{PP'}$ spectrum

Resonance \mathcal{R} contributions for each channel:

Resonance \mathcal{R} contributions for each channel:

Resonance \mathcal{R} contributions for each channel:

Only 0^{++} and 2^{++} allowed

Tetraquark Physics, Frascati, April 5, 2011 – p.36

Resonance \mathcal{R} contributions for each channel:

- **Only** 0^{++} and 2^{++} allowed
- **K**inematical constraints

Resonance \mathcal{R} contributions for each channel:

- **Only** 0^{++} and 2^{++} allowed
- Kinematical constraints
- Final state isospin

Resonance \mathcal{R} contributions for each channel:

- **Only** 0^{++} and 2^{++} allowed
- Kinematical constraints
- Final state isospin

Threshold effects for $f_0, a_0, \sigma \Rightarrow$ Flatté formalism^[Flatte (1976)]

Evidence for light tetraquarks

Masses for light resonances in constituent model ⇒ Flavor nonets are arranged as triangles

Nature of f_0, a_0, σ

• Light tetraquark $SU(3)_F$ nonet [t'Hooft et al., (2008)]

$$\sigma^{[0]} = [ud][\bar{u}\bar{d}]$$

$$\kappa = [su][\bar{u}\bar{d}]; [sd][\bar{u}\bar{d}]$$

$$(+\text{conjugate doublet})$$

$$f_0^{[0]} = \frac{[su][\bar{s}\bar{u}] + [sd][\bar{s}\bar{d}]}{\sqrt{2}}$$

$$a_0 = [su][\bar{s}\bar{d}]; [sd][\bar{s}\bar{u}];$$

$$\frac{[su][\bar{s}\bar{u}] - [sd][\bar{s}\bar{d}]}{\sqrt{2}}$$

Nature of f_0, a_0, σ

• Light tetraquark $SU(3)_F$ nonet [t'Hooft et al., (2008)]

$$\sigma^{[0]} = [ud][\bar{u}\bar{d}]$$

$$\kappa = [su][\bar{u}\bar{d}]; [sd][\bar{u}\bar{d}]$$

$$(+\text{conjugate doublet})$$

$$f_0^{[0]} = \frac{[su][\bar{s}\bar{u}] + [sd][\bar{s}\bar{d}]}{\sqrt{2}}$$

$$a_0 = [su][\bar{s}\bar{d}]; [sd][\bar{s}\bar{u}];$$

$$\frac{[su][\bar{s}\bar{u}] - [sd][\bar{s}\bar{d}]}{\sqrt{2}}$$

 $SU(3)_F$ limit \Rightarrow Identical couplings

S-wave resonance contribution

Zweig allowed light tetraquark resonance contributions:

Effective Lagrangian for 0^{++} tetraquarks:

 $\mathcal{L} = g_{SPP'}(\partial_{\mu}P)(\partial^{\mu}P')S + g_{Y_{b}^{I}\Upsilon(nS)S}Y_{b\mu}^{I}\Upsilon^{\mu}S$

*D***-wave resonance contribution**

Zweig allowed $f_2(1270)$ contribution:

• $f_2(1270)$ effective Lagrangian:

 $\mathcal{L} = 2g_{f_2PP'}(\partial_{\mu}P)(\partial_{\nu}P')f_2^{\mu\nu} + g_{Y_b^I}\gamma_{(nS)f_2}Y_{b\mu}^I\gamma_{\nu}f_2^{\mu\nu}$

Fit to $\sigma(e^+e^- \to Y_b \to \Upsilon(1S)\pi^+\pi^-)$

Fit to normalized cross section:

$$\widetilde{\sigma}_{\pi^{+}\pi^{-}} \equiv \sigma_{\Upsilon(1S)\pi^{+}\pi^{-}} / \sigma_{\Upsilon(1S)\pi^{+}\pi^{-}}^{\text{Belle}} \quad \text{with} \quad \sigma_{\Upsilon(1S)\pi^{+}\pi^{-}}^{\text{Belle}} = 1.61 \pm 0.16 \text{ pb}$$

Fit to $\sigma(e^+e^- \to Y_b \to \Upsilon(1S)\pi^+\pi^-)$

Fit to normalized cross section:

 $\widetilde{\sigma}_{\pi^+\pi^-} \equiv \sigma_{\Upsilon(1S)\pi^+\pi^-} / \sigma_{\Upsilon(1S)\pi^+\pi^-}^{\text{Belle}} \quad \text{with} \quad \sigma_{\Upsilon(1S)\pi^+\pi^-}^{\text{Belle}} = 1.61 \pm 0.16 \text{ pb}$

Fit features:

ROOT $\mathcal{O}(5000)$ fits - checked with Mathematica

- Simultaneous fit
- Binning taken into account

Different Flatté couplings BES, CB and KLOE

Fit to $\sigma(e^+e^- \to Y_b \to \Upsilon(1S)\pi^+\pi^-)$

Fit results:

		A'	B'	$g'_{Y^0_b\Upsilon(1S)f_0}$	$g'_{Y^0_b\Upsilon(1S)f_2}$	$arphi \sigma$	$arphi_{f_0}$	φ_{f_2}
BE	ES, CB	0.000079	-0.00020	0.318	0.439	0.36	-2.76	-0.46

Fit to $\sigma(e^+e^- \to Y_b \to \Upsilon(1S)\pi^+\pi^-)$

Fit results:

	A'	B'	$g'_{Y^0_b\Upsilon(1S)f_0}$	$g'_{Y^0_b\Upsilon(1S)f_2}$	$arphi \sigma$	$arphi_{f_0}$	φ_{f_2}
BES, CB	0.000079	-0.00020	0.318	0.439	0.36	-2.76	-0.46

 $\chi^2/d.o.f. = 21.5/15 \Rightarrow$ Good agreement with data

Stable for BES, CB and KLOE input

Fit to $\sigma(e^+e^- \to Y_b \to \Upsilon(1S)\pi^+\pi^-)$

	<i>A</i> ′	B'	$g'_{Y^0_b\Upsilon(1S)f_0}$	$g'_{Y^0_b\Upsilon(1S)f_2}$	$arphi_{\sigma}$	$arphi_{f_0}$	φ_{f_2}
BES, CB	0.000079	-0.00020	0.318	0.439	0.36	-2.76	-0.46

 $\chi^2/d.o.f. = 21.5/15 \Rightarrow$ Good agreement with data

- **Stable for BES, CB and KLOE input**
- Clear resonance dominance!

Predictions for $\Upsilon(1S)(K^+K^-, \eta\pi^0)$

Predictions for $\Upsilon(1S)(K^+K^-, \eta\pi^0)$

• Agreement with $\tilde{\sigma}_{K^+K^-} = 0.11^{+0.04}_{-0.03}$ (BELLE)

Predictions for $\Upsilon(1S)(K^+K^-, \eta\pi^0)$

Agreement with $\tilde{\sigma}_{K^+K^-} = 0.11^{+0.04}_{-0.03}$ (BELLE)

 $\Rightarrow 1.0 \lesssim \widetilde{\sigma}_{\eta\pi^0} \lesssim 2.0$ predicted

Predictions for $\Upsilon(1S)(K^+K^-, \eta\pi^0)$

• Agreement with $\tilde{\sigma}_{K^+K^-} = 0.11^{+0.04}_{-0.03}$ (BELLE)

 $\Rightarrow 1.0 \lesssim \widetilde{\sigma}_{\eta\pi^0} \lesssim 2.0$ predicted

Resonance dominance

 \Rightarrow Characteristic shape

Predictions for $\Upsilon(1S)(K^+K^-, \eta\pi^0)$

• Agreement with $\tilde{\sigma}_{K^+K^-} = 0.11^{+0.04}_{-0.03}$ (BELLE)

 $\Rightarrow 1.0 \lesssim \widetilde{\sigma}_{\eta\pi^0} \lesssim 2.0$ predicted

Resonance dominance

 \Rightarrow Characteristic shape

 \Rightarrow Excellent tests

Further predictions

Further predictions

Production of $K\bar{K} \propto Q^2_{[bq]}$

$$\Rightarrow \frac{\sigma_{\Upsilon(1S)K^+K^-}}{\sigma_{\Upsilon(1S)K^0\bar{K}^0}} = \frac{Q^2_{[bu]}}{Q^2_{[bd]}} = \frac{1}{4}$$

flavor eigenstate diquark charge:

$$Q_{[bd]} = -2/3$$
 $Q_{[bu]} = +1/3$

Further predictions

Production of $K\bar{K} \propto Q^2_{[bq]}$

$$\Rightarrow \frac{\sigma_{\Upsilon(1S)K^+K^-}}{\sigma_{\Upsilon(1S)K^0\bar{K}^0}} = \frac{Q^2_{[bu]}}{Q^2_{[bd]}} = \frac{1}{4}$$

flavor eigenstate diquark charge:

$$Q_{[bd]} = -2/3$$
 $Q_{[bu]} = +1/3$

 $\blacksquare B\bar{B} \text{ produced by } \Upsilon(5S) + Y_b^{(1)}$

 $\Rightarrow \frac{\sigma_{B^+B^-}}{\sigma_{B^0\bar{B}^0}} \approx 1 - \frac{0.2}{\kappa^2 + 0.27}$ $\Rightarrow B^0 \bar{B}^0 \ 10\% \text{ enhanced vs } B^+B^-$

Further predictions

Production of $K\bar{K} \propto Q^2_{[bq]}$

$$\Rightarrow \frac{\sigma_{\Upsilon(1S)K^+K^-}}{\sigma_{\Upsilon(1S)K^0\bar{K}^0}} = \frac{Q^2_{[bu]}}{Q^2_{[bd]}} = \frac{1}{4}$$

flavor eigenstate diquark charge:

$$Q_{[bd]} = -2/3$$
 $Q_{[bu]} = +1/3$

 $\blacksquare B\bar{B} \text{ produced by } \Upsilon(5S) + Y_b^{(1)}$

 $\Rightarrow \frac{\sigma_{B^+B^-}}{\sigma_{B^0\bar{B}^0}} \approx 1 - \frac{0.2}{\kappa^2 + 0.27}$

Distinct for tetraquarks with pointlike diquarks

 $\Rightarrow B^0 \bar{B}^0 \ 10\%$ enhanced vs $B^+ B^-$

• $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ decays are Zweig forbidden ; disfavoured by observed decay widths and dipion mass spectra

- $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ decays are Zweig forbidden ; disfavoured by observed decay widths and dipion mass spectra
- $Y_b \to \Upsilon(nS)\pi^+\pi^-$ decays are Zweig allowed;
 - \Rightarrow naturally explain the large observed decay widths
- Couplings to light quark resonances ($\sigma(600), f_0(980), f_2(1270)$) \Rightarrow Explanation of the shape of the invariant dipion mass spectra
- The states $h_b(1P)$ and $h_b(2P)$ observed by Belle are most likely tetraquark decay products: $Y_b(10890) \rightarrow h_b(1P, 2P)\pi^+\pi^-$

- $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ decays are Zweig forbidden ; disfavoured by observed decay widths and dipion mass spectra
- $Y_b \to \Upsilon(nS)\pi^+\pi^-$ decays are Zweig allowed;
 - \Rightarrow naturally explain the large observed decay widths
- Couplings to light quark resonances ($\sigma(600), f_0(980), f_2(1270)$) \Rightarrow Explanation of the shape of the invariant dipion mass spectra
- The states $h_b(1P)$ and $h_b(2P)$ observed by Belle are most likely tetraquark decay products: $Y_b(10890) \rightarrow h_b(1P, 2P)\pi^+\pi^-$
- Crucial tests:
 - Decays $Y_b \to \Upsilon(1S)(K^+K^-, \eta\pi^0)$ dominated by the light tetraquarks $f_0(980)$ and $a_0(980)$
 - Confirmation of the Exclusive decay rate ratios

- $\Upsilon(5S) \to \Upsilon(nS)\pi^+\pi^-$ decays are Zweig forbidden ; disfavoured by observed decay widths and dipion mass spectra
- $Y_b \to \Upsilon(nS)\pi^+\pi^-$ decays are Zweig allowed;
 - \Rightarrow naturally explain the large observed decay widths
- Couplings to light quark resonances ($\sigma(600), f_0(980), f_2(1270)$) \Rightarrow Explanation of the shape of the invariant dipion mass spectra
- The states $h_b(1P)$ and $h_b(2P)$ observed by Belle are most likely tetraquark decay products: $Y_b(10890) \rightarrow h_b(1P, 2P)\pi^+\pi^-$
- Crucial tests:
 - Decays $Y_b \to \Upsilon(1S)(K^+K^-, \eta\pi^0)$ dominated by the light tetraquarks $f_0(980)$ and $a_0(980)$
 - Confirmation of the Exclusive decay rate ratios

 $\Rightarrow \text{Forthcoming Belle data, and crucially data from the Super-}B$ factories eagerly awaited!
Tetraquark Physics, Frascati, April 5, 2011 - p.45

thank you!

Backup

Tetraquark Physics, Frascati, April 5, 2011 – p.47

Light tetraquark interactions

The effective Lagrangian (i, j are flavor indices):

$$\mathcal{L} \propto \text{Det}(Q_{LR})$$
, $(Q_{LR})^{ij} = \bar{q}_L^i q_R^j$

induces tetraquark-meson 6-quark interactions via

 $\operatorname{Tr}(J^{[4q]}J^{2q})$, with $J^{[4q]}_{ij} = [\bar{q}\bar{q}]_i[qq]_j$, $J^{2q}_{ij} = \bar{q}_jq_i$

Diquarks: Evidence in lattice QCD

gauge invariant two-density correlators:

 $C_{\Gamma}(\mathbf{r}_{u},\mathbf{r}_{d},t) \equiv \langle 0|J_{\Gamma}(\mathbf{0},2t)J_{0}^{u}(\mathbf{r}_{u},t)J_{0}^{d}(\mathbf{r}_{d},t)J_{\Gamma}^{\dagger}(\mathbf{0},0)|0\rangle$ where $J_0^f(\mathbf{r},t) =: \overline{f}(\mathbf{r},t)\gamma_0 f(\mathbf{r},t):, f = u, d$ and $J_{\Gamma}(x) = \epsilon^{abc} \left| u^{T}{}_{a}(x)C \,\Gamma d_{b}(x) \pm d^{T}{}_{a}(x)C \,\Gamma u_{b}(x) \right| s_{c}(x)$ correlator: $C_{\gamma_5}(r, r_{ud}) \propto e^{-r_{ud/r_0(r)}}$ static quark: S_{c} flavor symmetry: +/quark distance: $r_{ud} = 2r\sin(\theta/2)$ 0^+ : $\Gamma = \gamma_5$ angle: $\theta = \cos^{-1}(\vec{r_u} \cdot \vec{r_d})$ 1⁺: $\Gamma = \gamma_i$ diquark size: $r_0(r)$