SuperB Workshop, LNF, 4-7 April 2011

Result from Test Beam: reconstruction and muon ID

G.Cibinetto, N.Gagliardi and M.Rotondo

Outline

- Goal;
- Layout;
- Data;
- Strategy;
- Track Direction Correction;
 - X hits;
 - Y hits
 - ✓ Z hits;
- Last Layer;
- Data-MC comparison;
- Simulation of the pion time development;
- Conclusions.

Prototype Data Analysis: Goal

•Muon/Pion separation on real data;

Define a model for Detector Response (Digitization);
Both aspects important for Detector Geometry optimization and for future SuperB full simulation;

•Hadronic shower tails are crucial to define:

The total amount of material;

The optimal segmentation;

Many studies on the shower development available above 10 GeV, few old studies available in the "GeV" regime;
The analysis of the prototype requires close interplay with simulation.

Prototype Data Analysis: Layout

•Scintillator S₁₋₂ used to select events •Scintillator S₃₄ used to evaluate the leak per track •For the time being: Analyze only BIRO channels TDC will follow

Selection

Distance between Crk1/2 and prototype is ~22m, the pion decays are an issue:
4 GeV: 8% Simulation needed to
8 GeV: 4% subtract this component

Prototype Data Analysis: Data

	Trig	N _{tot}	S ₁₋₂ μ	S ₁₋₂ π	S ₃₄ μ	S ₃₄ π
4 GeV	μ	35320	28,9%	16,2%	25,5%	12,6%
	μ+π	48420	2,4%	71,2%	25,4%	11,3%
5 GeV	μ	51113	40,3%	13,2%	43,9%	12,3%
	μ+π	118635	2,2%	78,8%	48,0%	10,4%
6 GeV	μ	51860	52,4%	6,8%	64,3%	13,7%
	μ+π	57342	3,4%	71,8%	52,7%	4,8%
8 GeV	μ	Х	X	X	Х	Х
	μ+π	95326	2,8%	89,7%	81,4%	10,4%

Prototype Data Analysis: Strategy

•Total number of hits/layer and lateral size for pions, strongly related to the hadronic shower shape;

- •Last layer is a quantitative clear measurable quantity related to the pion punch-through;
- •Evaluate the hadronic shower leak using scintillator S_3-S_4 ;
- •Time development of the signal in IFR for muons is in the sub-ns regime, and extend to 50ns and more for hadronic;
- •Analysis strategy:
 - Reduce smearing due to the beam size (~10cm) using the first 3 layers;
 - Quantitative studies on hadronic shower development cannot be done because of the rough longitudinal segmentation.

X and Y hit positions

X and Y positions show a smeared distribution due to finite dimension of the beam and MS before prototype;
The study of the later shower size needs the knowledge of the track direction.

Track direction Correction

Track direction determined from hits collected in the first three layers;
Next Test Beam MWPC?

X as function of beam energy

Y as function of beam energy

Later cluster size

Z as function of beam energy

Last Layer as function of beam energy

Data-MC Comparison

•Try to estimate the contamination of muons in pions sample and vice versa using MC;

Implemented a simulation of the prototype: several information are missing (correct distances, scintillator dimensions, beam composition as function of the energy, Cerenkov efficiencies, ...);
Muons fraction are quite compatible within errors;

•Pions show opposite distributions.

Simulation: Time development for 8 GeV π

IFRHits.pos.fY:IFRHits.layer (FRHits.edep>0.0001 && abs(FRHits.64)<20 && IFRHits.pos.fZ>2100 && IFRHits.pos.fZ<2350)

IFRhits.pos.ff:IFRhits.layer (FRhits.edep>0.0001 && abs(FRhits.5-104)<20 && IFRhits.pos.fZ>2109 && IFRhits.pos.fZ>2309)

Conclusions

•First study encouraging

•Clear differences in lateral and longitudinal cluster shape in the muon and pion enriched samples;

•So far comparison with MC not clear because of:

- Unknown beam composition and Cerenkov efficiencies;
- Layout geometry not completely known.
- •To do for Elba:
 - Look at TDC response;

•Use Test Beam data to understand timing response of prototype and comparison with simulation;

Implement a muon tracker;

Compare "muon" selection using different configurations;Final answers on geometry require tuned simulation!!!