

Update on Background simulation with Bruno (Svt, Dch and more)

Riccardo Cenci University of Maryland

SuperB General Meeting, Frascati (ITALY)

Apr 5tb, 2011

Status and Outline

- •After the December meeting:
 - More realistic IP-SvtL0 geometry
 - Additional bkg sources still missing (Touschek)

•Outline:

- •Svt background at charm threshold
- •Request from ETD: particle rates vs energy on electronics (starting with Svt) for single event upset studies
- Background in the detector hall
- •Not covered here (see talk in Dch session):
 - •DCH High occupancy with Dec 2010 geometry
 - •Validation of occupancy algorithm and track simulation in Dch gas (step size limit and single scattering)

Svt Background at charm threshold

Charm threshold events

- •2-photon (pairs), ~2M GuineaPig evts prepared by Alejandro
 - E(CM) = 3.772 GeV/c² and **boost of 0.24**
 - HER (electrons): 2.388644 GeV/c, LER (positrons): 1.490469 GeV/c
 - $E(CM) = 3.772 \text{ GeV/c}^2$ and **boost of 0.91** (suggested by Pantaleo)
 - HER (electrons): 4.265335 GeV/c, LER (positrons): 0.834682 GeV/c
 - For both configuration we assume the same crossing angle as at the Y(4S) threshold (30mrad)
 - At the Psi(3770) threshold diag36 estimates the cross section to be 4.9 mbarn , ~1.4 smaller than at Y(4S) threshold (7.3 mb)
 - Expected luminosity: 10³⁵ cm⁻² s⁻¹, **Rate: 490 MHz** (7.3 GHz at Y4S)
- RadBhabha not yet available because they depend from machine configuration

Charm threshold: rates

Riccardo Cenci

SuperB General Meeting, Apr 5, 2011

Charm threshold: rates

Y(4S) Threshold Psi(3770), boost 0.24 Psi(3770), boost 0.91

Riccardo Cenci

Particle rates vs energy

Single event effects on electronics

•Aside from radiation dose, electronics is affected also by single event upset (SEU, transient) or single event latch-up (SEL, permanent): configuration losses, data corruption, circuitry damages

• Trying to estimate them using full simulation output: particle rates vs energy for **electrons**, **photons**, **neutrons**, **protons**, **ions**

- Request on May 2010 from Alberto Stabile (Milano), never followed up for lacking of time
- Second request from ETD people (Dominique)

•Background people will provide distributions (maps) and ETD people will use them to estimate the SE(U,L) probability using specific cross-sections

Particle rates on SVT electronics

- Preliminary version of particle rate maps, SVT electronics only, 2-photons bkg
- Energy range: [0-1] GeV, # of particle / (cm² s)
- When validated, maps can be easily generated for any sensitive volume (mainly subsystem electronics)

Particle rates on SVT electronics

- Preliminary version of particle rate maps, SVT electronics only
- Energy range: [0-1] GeV, # of particle / (cm² s)
- When validated, maps can be easily generated for any sensitive volume (mainly subsystem electronics)

Background in the detector hall

- Before detector was in a big empty volume called "World" (filled with air)
- Request for adding detailed description of the detector hall:
 - Best location for external crate of electronics
 - Background and shielding from concrete wall, e.g. far pipes are already in the tunnel, less particles can eventually reach the detector
- Eugenio implemented a rough model:
 - Cylindrical concrete wall
 - Sensitive volumes for monitoring the radiation: big silicon plates around the detector, step of 1 m, 400um thick

 Concrete cylinder with tunnel pieces

Inner
 radius is
 10m

Silicon

 plates (not
 all of them
 are
 displayed)

•Top view

•5 (fwd) + 9 (barrel) + 5 (bwd) plates

 Hexagonal holes around the detector

•Beam view

Radiation dose

•RadBhabha production, Cipe geometry, dose in r-z bins

Radiation Dose on Env Monitor Plates vs r - z (ji) 1000 Dose (krad 900 800 700 10² 600 500 400 10 300 200 100 -200 800 -800 -600 600 -400 400 0 200 z (cm)

Conclusions

•First estimate of Svt background (2-photon) at charm threshold: lower than Y(4S), mainly from 10 times less lumi

•Particle rate maps vs energy, input for ETD people to compute SEE probability, preliminary plot for Svt electronics

•Detector hall: concrete wall and radiation monitoring outside the detector