

SuperB Accelerator Status

M. Biagini for the Super*B* Accelerator Team SuperB Workshop LNF LNF, Frascati, April 4-6, 2011

Present SuperB Accelerator Team

- M. E. Biagini, S. Bini, R. Boni, M. Boscolo, B. Buonomo, S. Calabro', T. Demma, E. Di Pasquale, A. Drago, M. Esposito, L. Foggetta, S. Guiducci, S. Liuzzo, G. Mazzitelli, L. Pellegrino, M. A. Preger, P. Raimondi, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, A. Stella, S. Tomassini, M. Zobov (LNF)
- K. Bertsche, A. Brachman, Y. Cai, A. Chao, R. Chestnut, M. H. Donald, C. Field, A. Fisher, D. Kharakh, A. Krasnykh, K. Moffeit, Y. Nosochkov, A. Novokhatski, M. Pivi, C. Rivetta, J. T. Seeman, M. K. Sullivan, S. Weathersby, A. Weidemann, J. Weisend, U. Wienands, W. Wittmer, M. Woods, G. Yocky (SLAC)
- A.Bogomiagkov, I. Koop, E. Levichev, S. Nikitin, I. Okunev, P. Piminov, S. Sinyatkin, D. Shatilov, P. Vobly(BINP)
- F. Bosi, E. Paoloni (INFN & University of Pisa)
- J. Bonis, R. Chehab, O. Dadoun, G. Le Meur, P. Lepercq, F. Letellier-Cohen, B. Mercier, F. Poirier, C. Prevost, C. Rimbault, F. Touze, A. Variola (LAL-Orsay)
- B. Bolzon, L. Brunetti, A. Jeremie (LAPP-Annecy)
- M. Baylac, O. Bourrion, J.M. De Conto, Y. Gomez, N. Monseu, D. Tourres, C. Vescovi (LPSC-Grenoble)
- A. Chancé (CEA-Saclay)
- D.P. Barber (DESY & Cockcroft Institute)
- S. Bettoni (PSI)
- P. Fabbricatore, R. Musenich, S. Farinon (INFN & University of Genova)
- Yuan Zhang (IHEP, Beijing) NEW ENTRY
- Hopefully soon: R.Bartolini, A. Seryi, A. Wolski et al... (John Adams & Cockcroft Institute)

SuperB Accelerator

 SuperB Progress Reports -- Accelerator updated in January:

http://arxiv.org/abs/1009.6178v2

- Site still under study
- Layout will evolve following the site chosen & the new options (SR beamlines)
- Collaboration is growing but manpower recruitment is needed as soon as possible
- R&D on QD0 progressing very well
- More R&D starting (RF, beam-beam, SR beamlines layout...)

Layout V12, 1.25 Km

Machine Parameters for 10³⁶ cm⁻² s⁻¹

- The IP and ring parameters have been optimized based on several constraints to maintaining wall plug power, beam currents, bunch lengths, and RF requirements comparable to present B-Factories
- Simplifying the IR design as much as possible. In particular, reduce the synchrotron radiation in the IR, reduce the HOM power and increase the beam stay-clear
- Relaxing as much as possible the requirements on the beam demagnification at the IP. Improved chromatic correction in arc cells

Flexibility for parameters choice

- The horizontal emittance can be decreased by about a factor 2 in both rings by changing the partition number (by changing the RF frequency [LER] or the orbit in the Arcs) and the natural ARC emittance by readjusting the lattice functions
- The Final Focus system as a built-in capability of about a factor 2 in decreasing the IP beta functions
- The RF system will be able to support higher beam currents (up to a factor x1.6) over the baseline, when all the available PEP-II RF units are installed

Parameters list

		Base Line		Low Emittance		High C	urrent	Tau/Charm (prelim.)		
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	
UMINOSITY	cm ⁻² s ⁻¹	1.00	+36	1.00E+36		1.00E+36		1.00E+35		
inergy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	
Circumference	m	125	8.4	125	i8.4	1258.4		125	8.4	
(-Angle (full)	mrad	6	6	6	6	6	6	66		
^p iwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	
s _x @IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	
sγ @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	
_x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82	
x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	
у	pm	5	6.15	2.5	3.075	10	12.3	13	16	
5 _x @ IP	μm	7.211	8.872	5.099	6.274	10.060	12.370	18.749	23.076	
_у @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	
• *X	μm	11.433		8.085		15.9	944	29.732		
'y	μm	0.0	50	0.030		0.0	76	0.131		
r_ (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36	
r_ (full current)	mm	5	5	5	5	4.4	4.4	5	5	
leam current	mA	1892	2447	1460	1888	3094	4000	1365	1766	
luckets distance	#	2		2		1		1		
on gap	%	2		1	2	2		2		
RF frequency	Hz	4.76	+08	4.76	E+08	4.76	E+08	4.76E	+08	
larmonic number		19	98	19	98	19	98	199	98	
lumber of bunches		97	8	97	78	19	56	195	j6	
I. Particle/bunch		5.08E+10	6.56E+10	3.92E+10	5.06E+10	4.15E+10	5.36E+10	1.83E+10	2.37E+10	
une shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	
une shift y		0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	
ong. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6	
nergy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166	
_{re} (full current)	dE/E	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.94E-04	7.34E-04	
CM σ _E	dE/E	5.00	E-04	5.00	E-04	5.00	E-04	5.26E-04		
otal lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79	
otal RF Power	MW	17.	08	12.72		30.	48	3.11		

Tau/charm threshold running at 10³⁵

Baseline + other 2 options: •Lower y-emittance •Higher currents (twice bunches)

Baseline:
Higher emittance due to IBS
Asymmetric beam currents

RF power includes SR and HOM

Energy scan

- Change center of-mass energy while maintaining the same magnetic field strength ratio for QD0 and QF1
- Can get to all of the Upsilon resonances Y(1S)...Y (5S)
- Can scan the center-of-mass energy above the Y(4S) without removing or changing any of the permanent magnets
- Have to remove most if not all of the permanent magnets for Taucharm energy region

Resonance	Upsilon 4S	Upsilon 3S	Upsilon 2S	Upsilon 1S
Ecm (GeV)	10.5794	10.3554	10.0236	9.4609
HER				
E (GeV)	6.694	6.553	6.343	5.988
QD0 (T/cm)	-0.97584	-0.95329	-0.91969	-0.86285
QF1 (T/cm)	0.60408	0.59132	0.57232	0.54019
LER				
E (GeV)	4.18	4.091	3.96	3.737
QD0 (T/cm)	-0.63941	-0.62522	-0.60435	-0.56882
QF1 (T/cm)	0.37412	0.36616	0.35445	0.33450
QD0 ratio	1.52617	1.52472	1.52179	1.51693
QF1 ratio	1.61466	1.61491	1.61469	1.61490
γ	1.02785	1.02787	1.02787	1.02791
Boost (γβ)	0.23763	0.23773	0.23775	0.23793

Sullivan

Beam-beam

- Beam-beam tune scan performed with latest beam parameters (V12) and latest beam beam code, improved to take into account crabbed beams
- Comparison with previous parameters: lower bb tune shift increases tune operation area and achievable luminosity (10^36 in the large red area)
- Needs to be run including lattice nonlinearities for beam beam tails and lifetime, as soon as the lattice is "reasonably" stable

Beam-beam tune scan

CDR, ξ_y = 0.17

$$CDR2, \xi_v = 0.097$$

L (red) = $1. \cdot 10^{36}$

Shatilov

Intra Beam Scattering

3 methods used, all in good agreement:

Boscolo, Chao, Demma

- **Bane** (theoretical), allows for emittance growth rates estimate
- > Chao (theoretical), allows for emittance time evolution estimate
- ➢ 6D MonteCarlo → more accurate, all of above, will include non-gaussian tails, soon to be translated from Mathematica to Fortran for speed and precision reasons (collaboration with M. Pivi, SLAC)

e-cloud instability

- Single bunch instability simulations for SuperB HER (V12 and V13) taking into account the effect of solenoids have been performed using CMAD (M. Pivi). They indicate a threshold density of ~10¹² e-/m³ (roughly 2 times previous estimates)
- The obtained thresholds have to be compared with build-up simulations using updated parameters to determine safe regions of the parameter space (SEY, PEY)
- Work is in progress to:
 - Estimate the effect of radiation damping on long term emittance growth
 - Estimate the fraction of synchrotron radiation absorbed by antechambers.

Vertical emittance growth induced by e-cloud

Build-up in Free Field Regions

Snapshot of the electron (x,y) distribution

Density at center of the beam pipe is larger then the average value.

Snapshot of the electron (x,y) distribution 50G solenoids on

Solenoids reduce to 0 the e-cloud density at center of beam pipe

Fast Ion Instability

Demma

- Residual gas in the vacuum chamber can be ionized by the single passage of a bunch train
- The interaction of the electron beam with residual gas ions results in mutually driven transverse oscillations
- Ions can be trapped by the beam potential or can be cleared out after the passage of the beam
- >Multi-train fill pattern with regular gaps is an efficient and simple way to cure FI
- Beam oscillations are suppressed by the feedback system for Lgap \geq 40 ns, while considerable residual oscillation remains for Lgap \leq 20 ns

Second order momentum compaction studies

 $\boldsymbol{\alpha} = \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}\boldsymbol{\delta} + \boldsymbol{\alpha}_{3}\boldsymbol{\delta}^{2}$

If the energy loss decreases with bunch length we have an instability without any threshold for a positive sign of $\frac{\alpha_2}{\alpha_1}$

Low Emittance Tuning for LER Liuzzo

occuren

5%

95%

average

ED						
LER	Misalignment	Tolerated value				
		ARC	FF			
lements From	Quadrupole H and V	50 µm	20 µm			
	Quadrupole Tilt	50 µrad	20 µrad			
re considered as a	Sextupole H and V	50 µm	20 µm			
ingle element	BPM resolution	1 µm	1 µm			
	BPM Offset	50 µm	20 µm			

LER ARC's tolerances evaluated using a Response Matrix technique that optimizes orbit, in order to recover the design values for Dispersion, Coupling and Betabeating, and obtain the lowest possible vertical emittance

Misalignment		Value
	ARC	FF
Quadrupole H and V	50 µm	00 µm
Quadrupole Tilt	50 µrad	00 µrad
Sextupole H and V	50 µm	00 µm
BPM resolution	1 µm	0 µm
BPM Offset	50 µm	00 µm

Different sets of correctors tested, may be reduced to 109. **Final Focus introduces** stringent restrictions on alignment of both FF and ARCS (even for no errors in FF)

The introduction of the Final Focus In the lattice defines more stringent tolerances also in the arcs

HER tolerances

Figure 2: Vertical emittance (m) for machine misalignment from 30 to 300μ m H and V for Sext and Quad and qudrupole Tilts of 30-300 μ rad. Orbit (O), Dispersion (D) and Coupling and Beta-beating (C) Free Steering are compared

Liuzzo

Figure 4: Vertical emittance for 50 simulation with misalignment and tilts from Table 1.

Table 1: Tolerances; values of the combined tolerated displacements, tilts and monitor offsets.

error	tolerance
quadrupole Y	$300~\mu m$
quadrupole X	$300~\mu m$
quadrupole tilt	$300 \ \mu rad$
sextupole Y	$150 \ \mu m$
sextupole X	$150 \ \mu m$
BPM OFFSET	$400 \ \mu m$
vertical emittance	$<1\rm pmrad$

IR design

Sullivan

- We have two designs that are flexible and have good:
 - SR backgrounds
 - Lattice functions
 - Beam apertures
- The two designs are:
 - Vanadium Permendur for QD0 and QF1
 - Parallel air-core dual quads for QD0 and QF1 (prototype in progress)
 - Both designs include additional vanadium permendur Panofsky quads on the HER
- These IR design demonstrates initial robustness
 - Two separate QD0 designs work
 - The direction of the beams can be either way with a weak preference for the incoming beams to be from the outside rings due to the location of the SR power on the cryostat beam pipe

QD0 Design: 2 possible choices

Vanadium Permendur "Russian" Design Air core "Italian" QD0, QF1 Design

Prototype in construction Min. thickness

0.57

cross section

Courtesy Mauro Perrella

(ASG Genova)

Inner-Outer

junction

Outer winding

Inner winding

Field generated by 2 double helix windings in a grooved AI support

Current adductors

- small space available for the super conductor (SC) and for the thermal stabilization material (Cu+Al)
- the margin to quench is small, however the energy stored by the magnet is small (Inductance ~ 0.3 mH) and a accidental SC to NC transition should not damage the magnet
- A single quadupolar magnet is under construction to determine:
- the maximum gradient (current) the magnet can safely handle @ 4.2 K
- the field quality at room temperature
- 200 m of SC wire kindly gifted by Luvata: Φ =1.28 mm, Cu/NbTi = 1.0, Ic 2450 A @ 4T, 4.2K

Fabbricatore, Farinon, Musenich, Paoloni

28 mm Luvata strand cross section

The actual grooved AI support

 Ready before Summer for tests and field measurements at CERN

Coupling correction with detector solenoid ON

- Scheme based on a hard edge solenoid field model. It includes bucking solenoids, an anti-solenoid, rotated IR permanent quadrupoles, skew quadrupole component in the SC quadrupoles, and a full set of skew quadrupoles and orbit correctors for complete compensation of linear coupling, orbit, dispersion and β function perturbation in each half-IR. Most of the correctors are rather weak
- The same system can be used to correct the coupling effect when the solenoid is off, but the SC quadrupole coupling components and QD0P rotation remain. The latter can be adjusted for most local correction
- Further studies are needed to evaluate the effect of solenoid on FF bandwidth and dynamic aperture. The non-linear solenoid effects need to be studied as well

Other correctors are outside of this region

Beam's eye view in a round chamber model

 SLAC Advanced Computing Department parallel Finite Element Method electromagnetic time domain solver (t3p) as a tool for IR wakefield computation

Weathersby

RF Power

Super-B RF plug power. Base Line.

ны	HER	HER	HER	HER	HER	HER	ны	HER	HER	ны	HER
Total	Zero I		Max	Number			Total	Total	Total	formed	reflecte
RF	Banch	Bunch	where	đ	S.R.	HOM	cavity	reflected	forward	to one	from
witage	langth	specing	per cavity	casities	potest	power	losa	роныг	power	cavity	016
MV	nn i	m	MV	klystrons	MW	MW	MW	MW	MW	MW	MW
	4.69										
7.01	4.78	4.20	0.58	12.00	3,99	0.27	0.54	0.36	5.16	0.43	0.03
	5.00			6.00							
LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER
Total	ZeroI		Max	Number			Total	Total	Total	for word	reflecte
RF	Bunch	Bunch	where	đ	S.R.	HOMs	cavity	reflected	forward	to one	from
witage	langth	spacing	par cavity	cavities	potrut	power	lous	poter	power	cavity	086
MM	1910	DASC	MW	klystrons	MW	MW	MW	MW	MW	MW	MW
	4.29										
5.25	4.71	4.20	0.66	8.00	2.12	0.41	0.45	0.05	3.03	0.38	0.01
	500			4.00							

Wakefields

Novokhatski "RF and HOMs absorbers

Sasha

Transverse wake fields

Transverse wake fields are generated in the

asymmetrical parts of the beam pipe.

Sasha Novokhatski "WF and HOMs absorbers"

Transverse wake fields can penetrate through the small hole in the vacuum chamber or longitudinal slots of shielded bellows, vacuum valves and RF shields.

Transverse wake fields may propagate long distances.

Bunch-by-bunch feedback upgrade

- During last month all the 6 DAΦNE feedback have been upgraded
- VFB new 12 bit iGp systems with larger dynamic range and software compatibility with the previous version
- LFB completely new systems in place of the old systems designed in 1992-1996 in collaboration with SLAC/LBNL: fe/be analog unit connected to iGp-8 as processing unit
- HFB: upgrade hw/sw of the iGp-8bit system already used
- Epics server upgraded to the last version of LINUX

 New front-end/back-end analog unit used in the longitudinal feedbacks

Polarization in SuperB

Barber, Monseu, Wienands, Wittmer

- 90° spin rotation about x axis
 > 90° about z followed by 90° about y
- "flat" geometry => no vertical emittance growth
- Solenoid scales with energy => LER more economical
- Solenoids are split & decoupling optics added

Polarization ($P_{inj} = 90\%$)

Wienands

Synchrotron light options @ SuperB

- Comparison of brightness and flux from bending magnets and undulators for different energies dedicated SL sources & SuperB HER and LER
- Synchrotron light properties from dipoles are competitive
- Assumed undulators characteristics as NSLS-II
- Light properties from undulators still better than most LS, slightly worst than PEP-X (last generation project)

Parameters	SuperB HER	SuperB LER	NSLS II	10 ³⁰	NSLSII SuperB LER SuperB HER			
E [GeV]	6.7	4.18	3	[™] 10 [™]	APS ALS ESRF			
I [mA]	1892	2447	500	2 mm 10 ¹⁷	ELETTRA PETRA III	SuperB HER	SuperB	LER
ρ [m]	69.64	26.8	24.975	0,1% 0,1%	NSI S		PETRAIII	\sum
εx [m rad]	2.0 E-9	2.46 E-9	0.55 E - 9	to to us tou			APS	17
εy [m rad]	5.0 E-12	6.15 E-12	8.0 E-12	d] sseutid		ELETTI	RA	11
γy [m^-1]	0.334	0.537	0.05	<u>ت</u> 10 ¹³	ESRF			ALS
σx [mm]	82.1 E-3	92.1 E-3	125.0 E-3	10 ¹² 1	0 ¹ 10 ²	10 ³	10 ⁴	10 ⁵
gy [mm]	8 66 F-3	9 11 F-3	13 4 F-3			photon er	nergy [eV]	
	0.00 2 0	5 2 0			Brightness	from be	ending m	agne

10

Brightness from undulators

Parameters	SuperB HER	SuperB LER	NSLS II	10 ²³		PEP X							
	IVU20	IVU20	IVU20	10 ²²		SuperB LER				Supe	rB HER		
E [GeV]	6.7	4.18	3	5	NSLS		\sum						
I [mA]	1892	2447	500	10 ²¹		PETRA							
ox [mm]	60.0 E-3	66.5 E-3	33.3 E-3							1	\mathbb{Z}	Spring	8
oy [mm]	2.4 E-3	2.6 E-3	2.9 E-3	c/0.1%	Sole	il		APS		/			
ox' [mrad]	33.3 E-3	37.0 E-3	16.5 E-3	asystop									
oy' [mrad]	2.1 E-3	2.7 E-3	2.7 E-3	940 SS 10 ¹⁸	- NSLSII								
N [1]	148	148	148	Brightne	SuperB LEF SuperB HEF APS	1							
λu [mm]	20	20	20	1017	PEPX Soleil								
Kmax [1]	1.83	1.83	1.83	10 ¹⁶	PETRA III								
Kmin [1]	0.1	0.1	0.1		10 [°]		photon	energy [e	10" €V]				

Injection System

Ground motion at LNF

Vibrations budget

- The small beam sizes at the IP pose stringent vibration requirements. Beam position at the IP is very sensitive to individual motion of IR components
- However, the present IR design with shared elements in a common cryostat will cause coherent motion of these elements, greatly reducing the vibration sensitivity of the IR.
- Cryostat vibration should be kept below 800 nm rms, and cryostat rotation less than 2 µm rms
- Vibration of the remaining FF and arc quadrupoles should be kept to less than 200 nm rms
- A fast luminosity feedback system should have a bandwidth of at least 100 Hz, achieving at least 10xvibration reduction at low frequencies
- With these requirements the vibration budget can be met even during the noisiest part of the day, limiting vibration-induced luminosity loss to less than 1%

Layout, Site

- The rings footprint is at the moment the same as presented at Elba. Injection and transfer lines are also unchanged
- The insertion of synchrotron beamlines, with their impact on the layout and lattice is being studied
- We are looking for a green field site in order to exploit at best the facility (SuperB and SL)
- Several sites seems available, first pick at the moment is in Tor Vergata University campus and we are studying its compatibility with the requirements (Site Committee will visit April 18-19)
- The layout will be adjusted as soon as the site is chosen to further optimize the system performances

Accelerator Team Organization

- Frascati Lab will host the team in the initial phase (at least 2 years...)
- Need to assemble a team:
 - INFN Frascati
 - ➢ INFN other Labs
 - ≻ SLAC
 - ➢ France
 - ≻ BINP
 - ➢ Poland
 - ≻UK
 - > More welcome!
- Need to obtain (a lot of) engineering help

Synergies with state-of-the art international efforts

- SuperB design has many characteristics in common with state-of-the-art colliders (LC, CLIC) and SL sources, to cite just a few:
 - Alignment of magnets, and orbit and coupling correction with the precision needed to produce vertical emittances of just a few pico-meters on a routine basis
 - Optimization of lattice design and tuning to ensure sufficient dynamic aperture for good injection efficiency (for both) and lifetime (particularly for SuperB LER), as well as control of emittances
 - Feedbacks (IP and rings)
 - Control of beam instabilities, including electron cloud, ion effects and CSR
 - Reduction of magnet vibration to a minimum, to ensure beam orbit stability at the level of a few microns
- All these issues are presently active areas of research and development, the similarity of the proposed operating regimes presents an opportunity for a well-coordinated program of activities that could yield much greater benefits than would be achieved by separate, independent research and development program

Conclusions

- Accelerator design is converging with most aspects starting to look feasible
- Lattice and parameters optimization is continuing, for better performances and more flexibility
- More subtle beam dynamics issues are being studied (e.g. IBS, FII, emittance diffusion, beam-beam effects, feedbacks)
- Components and lattice tolerances with corrections are being studied
- Polarization is progressing: beam-beam depolarization, trying to simplify the polarized gun, spin measurements
- Synchrotron Light beamlines option is being studied
- CDR2 is ready
- We are already actively collaborating with other Labs (CERN, PSI, Rutherford, Cornell,...) to solve common issues
- We need to organize the effort for the project

