

Detector Status

F.Forti, INFN and University, Pisa

Overview

- Detector design is fairly advanced
 - Progress report: <u>arxiv.org/abs/1007.4241</u>
- R&D continuing in several areas
- Organization is in place and working well
- We are moving towards the Technical Design Report

... but ...

- Significantly more physicists and engineers are needed
 - to finalize the design
 - to build and operate the detector
 - to do physics

Detector Organization

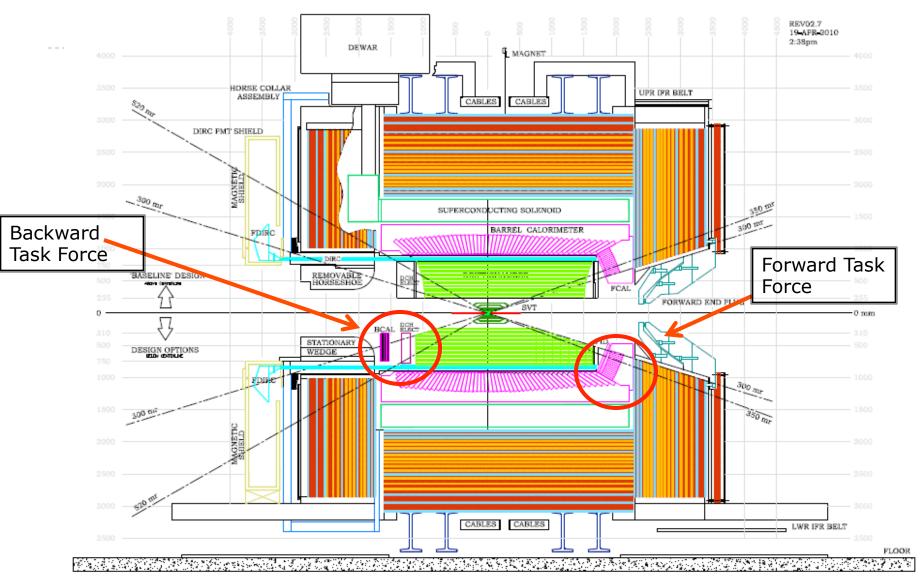
Detector Coordinators – B.Ratcliff, F. Forti Technical Coordinator – W.Wisnieswki

- SVT G. Rizzo
- DCH G. Finocchiaro, M.Roney
- PID N.Arnaud, J.Va'vra
- EMC F.Porter, C.Cecchi
- ► IFR R.Calabrese
- Magnet W.Wisniewski
- Electronics, Trigger, DAQ D. Breton, U. Marconi
- Online/DAQ S.Luitz
- Offline SW
 - Simulation coordinator D.Brown
 - Fast simulation M. Rama
 - Full Simulation F. Bianchi
- Rad monitor –
- Lumi monitor –
- Polarimeter –
- Background simulation M.Boscolo, E.Paoloni
- Machine Detector Interface –

Detector Geometry Working Group Chairs M.Rama, A.Stocchi

Forward Task Force Chair H.Jawahery

Backward Task Force Chair W.Wisniewski


> To be created: Mechanical integration team Central electronics team

Institutions

System	Institutions			
SVT	Bologna, Milano, Pavia, Pisa, Rome3, Torino, Trieste, Trento, LBNL, Queen Mary, RAL			
DCH	LNF, McGill, Montreal, TRIUMF, UBC, Victoria			
PID	SLAC, BINP , Hawaii, Cincinnati, Bari , Padova, Maryland, LAL, LPNHE			
EMC	Bergen, Caltech, Edinburgh, McGill, Perugia, Rome I			
IFR	Ferrara, Padova			
ETD	SLAC, Caltech, Napoli, Bologna, LAL, Padova, Roma3			
Computing	Padova, Ferrara, Torino, Bologna, Rome2, Pisa, Perugia, LNF, LBNL, Napoli, SLAC			
Magnet/ Integration	SLAC, LNF, Pisa			
Backgrounds	Pisa, LNF			
TBD	(Valencia, Barcelona, Annecy, Strasbourg, Tel Aviv, Ohio State, Liverpool, Kiev, Krakow,)			

Detector Design (with options)

iner B

Detector Design Issues

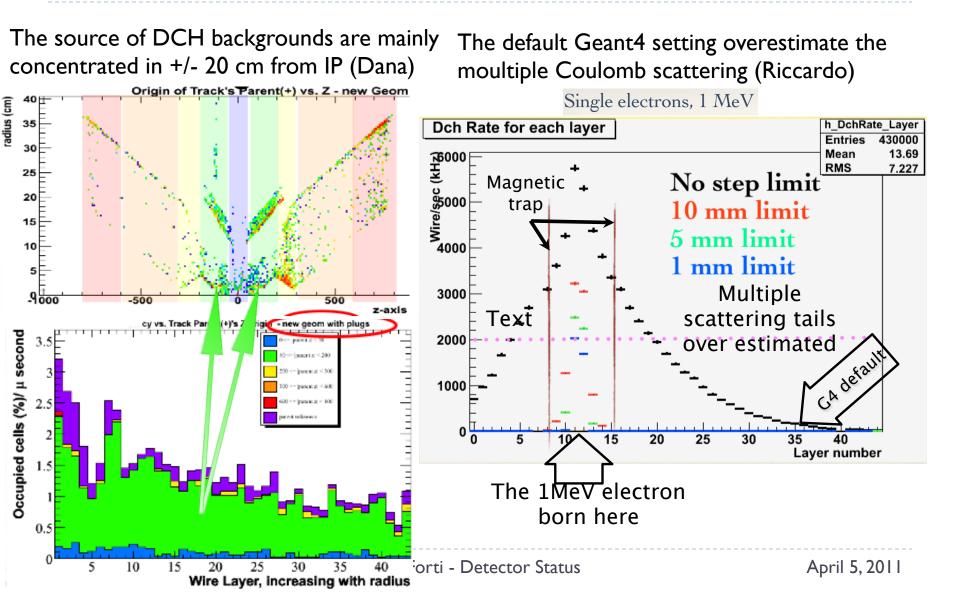
System	Baseline	Issues (technical OR manpower; R&D)
MDI	Initial IR designed	Magnetic elements and radiation masks. Design of tungsten shields. Background simulations: global map, detector occupancy
SVT	6-layer silicon	Technology for Layer 0: striplets or pixels. Thin pixels R&D. Readout chip for strips. Mechanical design.
DCH	Stereo-axial He-based	Dimensions (inner radius, length). Mechanical structure Cluster counting option.
EMC	Barrel: CsI(TI) Forw: LYSO	Electronics and trigger. Mechanical structure Forward EMC technology: LYSO / LYSO+CsI(TI); Pure CsI. Backward EMC: cost/benefit analysis
PID	DIRC w/ FBLOCK	FBLOCK design. Photon detection. Mechanical structure Forward PID: cost/benefit analysis. Different technologies.
IFR	Scintillator+ fibers	8 vs 9 layers. SiPM radiation damage and location. Extra 10cm iron. Mechanical design and yoke reuse.
ETD	Synchronous const. latency	Fast link rad hardness. LI Trigger (jitter and rate). ROM design. Link to computing for HLT.

TDR process and timeline

- The Technical Design Report is an essential step to get funding and get the detector built.
- Conflicting requirements
 - Essential to enlarge the collaboration, define institutional responsibilites and find resources for designing and building the detector
 - Essential that collaboration members, institutions and countries take ownership of the design and fabrication
 - Essential to move forward rapidly to finalizing the design and writing the TDR
- Timeline has to be adjusted to these requirements
 - Can be different for different systems

MDI

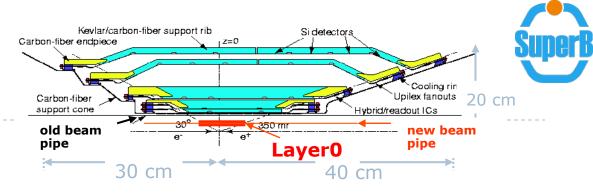
Eugenio Paoloni


Bkg simulation: progresses since Caltech

DCH bkg. rate dependence on max G4 step length

- The Geant4 default approximation made for slow particles traveling in low density material overestimates the multiple Coulomb scattering effect
- Low pt electrons caged in a single DCH cell by the magnetic field erroneously scattered over several cells giving rise to severe overestimates of the bkg. rate (R.Cenci).
- Correlation studies of loss position at the beam pipe and rate observed in the DCH, very useful for shield optimizations (D. Lindemann)
- Beam line + detector hall model (A.Perez)
- First look at the radiation map of the detector hall (R.Cenci)
- First look at the pair production rate on L0 in the 2 machine options (high/low boost @ charm threshold)
- Backward EMC scoring (S.Germani), fTOF (L.Burmistrov + R.Cenci)
- Bruno Optical photon simulation (A. Di Simone + D. Roberts)
- Please join the tomorrow afternoon Bkg parallel for further details

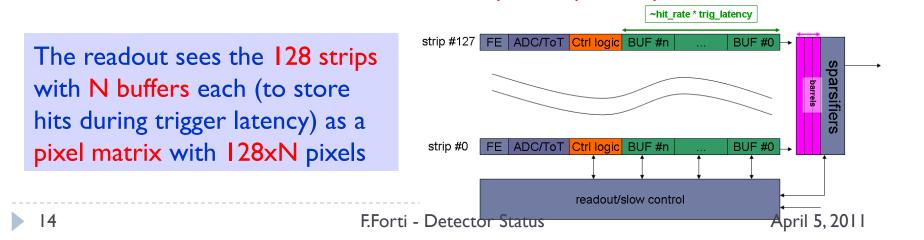
DCH Background studies


Focus of the meeting

- Definition a Quality Assurance policy for the next productions
 - Subsystem + machine reference plots
 - Definition of a before production "takeoff" checklist & sign off procedure
- Definition of a set of reference plot for background studies
 - Definition of a right after production "landing" checklist to validate the production output
- Write down the shopping list for the simulation of the poorly simulated/still not simulated background sources

SVT

Giuliana Rizzo



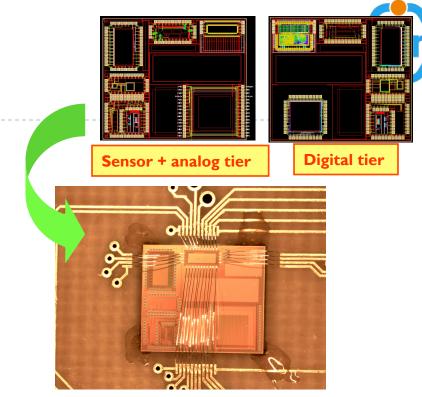
- SVT Baseline for TDR
 - Striplets in Layer0 @ R~1.5 cm
 - 5 layers of silicon strip modules (extended coverage w.r.t BaBar)
- Upgrade Layer0 to thin pixel for full luminosity run
 - more robust against background occupancy
- Since Caltech (approval!) more focused activities on the design of the SVT baseline option with regular biweekly SVT-TDR meetings
- Some progress also on pixel R&D
 - Slower than expected due to very long delays in delivery of first Vertical Integration (3D) MAPS → some results available from 2D wafers.
 - Preparation of new submissions for 3D pixels and INMAPS process.
- Testbeam in preparation for Sept. 2011

Main progress on SVT baseline (I)

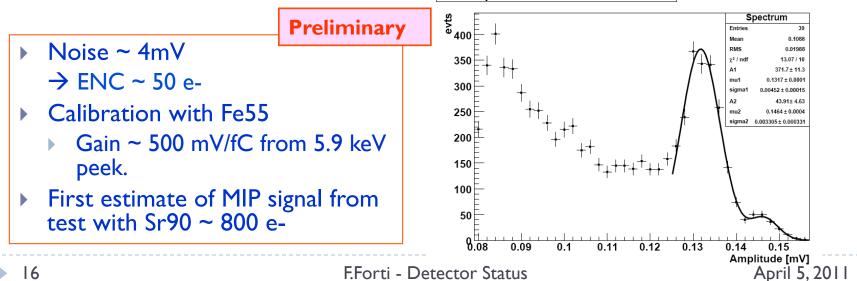
- Requirement definitions for strip/striplets FE readout chips:
 - Very different among layers: striplets: ~2 MHit/strip $\rightarrow 25$ ns shaping time & fast readout, Layer4-5 strip: long modules $\rightarrow 1 \ \mu$ s shaping
 - Existent FE chips do not match and we need to develop new chip(s)
 - Analog channels could be designed by Pavia group
 - Just started to evaluate if readout architecture we developed for pixel could be used for strip and striplets FE chips. Probably yes but need more thinking/simulation. Manpower is an issue.

FE chip for strips from pixel architecture

Main progress on SVT baseline (II)


- First estimate of noise performance for strip readout channel
 - realistic inputs for C, Rs, shaping time have been evaluated
- More realistic design of Layer0 striplets module:
 - Mechanical constraints quite tough
 - HDI design challenging
 - small, 6 chips, many output lines/chip
 - FE chip development needed
 - Important to (re-)evaluate real cost/benefit of having striplets vs hybrid pixel installed at T₀.
 15 EForti Detector Status

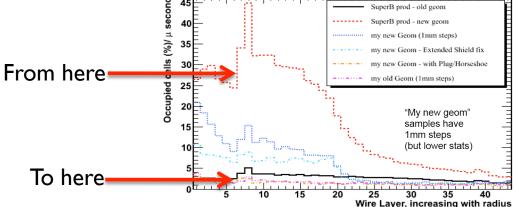
Laye r	С _⊳ [pF]	availabl e t _p [ns]	selected t _p [ns]	ENC from R ₅ [e rms]	ENC [e rms]	Hit rate/stri p [kHz]	Efficien cy 1/(1+N)
0	11.2	25, 50,	25	220	740	2060	0.890
1	26.7	100, 200 (or 150)	100	460	940	268	0.940
2	31.2		100	590	1100	179	0.959
2	45.8	400, 600,	400	520	980	EDE	0.952
3			500	470	920	52.5	0.940
4	52.6	800,	500	490	1000	21.0	0.974
4		1000 (or 500	600	440	940	21.9	0.969
E	67.5	and 1000)	800	560	1090	10.7	0.965
5		, , ,	1000	500	1030	18.7	0.957


Configurazione tipo HDI_30°_best

First results on MAPS from Chartered/Tezzaron process

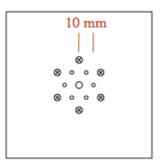
- 2D MAPS now available with the same CMOS process used for vertical integration of 3D MAPS
 - Now in test sensor+analog tier only!
 - First important results for the characterization of the process
- Still waiting for 3D wafers

Fe55 spectrum a5ttc-fe55-vfbk280mv


DCH

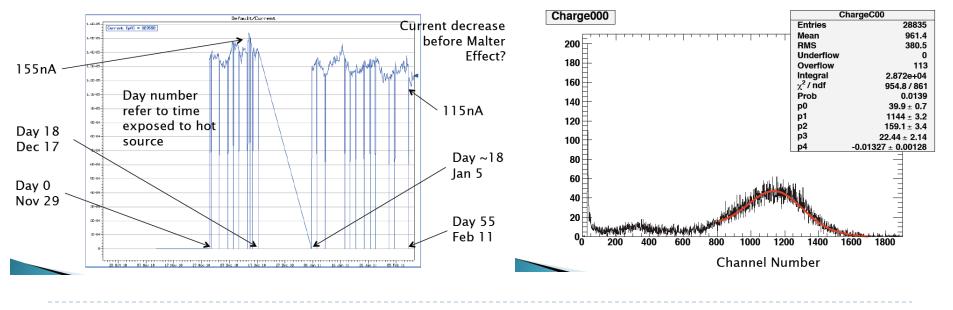
Giuseppe Finocchiaro and Mike Roney

Backgrounds


Problem of very high DCH background rates in recent Bruno productions now solved!

- End plug +"horseshoe" included in the simulation, extended Tungsten shield
- Issues which still need to be addressed
 - Safety factor? Validation e.g. with KLOE background data?
 - Touschek contribution to be inserted in Bruno

Aging studies

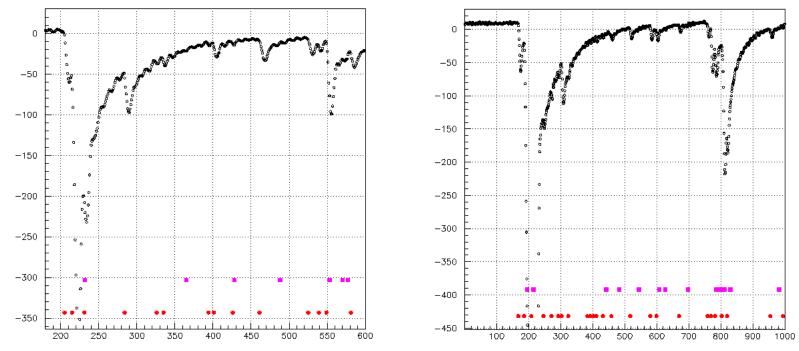


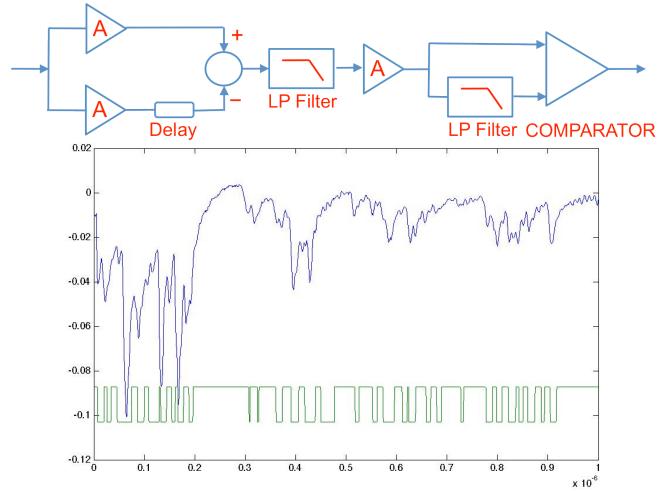
- Age chamber with a 100 mCi 55Fe source; measure 55Fe spectrum with a low-intensity source
- Monitor current, 55Fe peak location (gain), and ratio of small pulses to 55Fe interactions
 - Number of small pulses increase as Malter effect sets in.

Sense Wire Current with Hot Fe55

Fe55 Spectrum (Lower Activity)

Prototype 2


- Building 2.5m long prototype with 28 sense wires arranged in 8 layers
 - study DCH response from single clusters in a realistic environment, and serve as a test bench for the final FEE

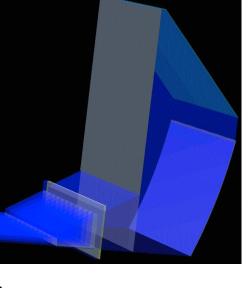

Cluster Counting in square drift tube

Continuing studies of cluster counting in 30mm square drift tubes

- Time of clusters from full waveform analysis
- Time of clusters from "analog derivative" method (delayed by ~50ns)

Improved Cluster Counting circuit

• Studies to verify Cluster Counting capability with analogic derivative circuit are going on.


• The method will be extensively tested on the 28 channel DCH prototype.

PID

Nicolas Arnaud and Jerry Va'vra

Barrel PID

- FBLOCK & New Wedge [SLAC]
 - Cosmo Co. has started to process of machining & polishing of the optical pieces.
 - New Wedge is expected to be finished by May.
 - FBLOCK is expected to be finished by June.
 - We are ~2 months late compared to original plans. More clear picture by Elba.
- FDIRC optical coupling studies [SLAC]
 - Developed a procedure to make a large optical couplings.
 - Measured transmission of all glue candidates.
 - Measuring yelowing under a large dose of photons and radiation damage effects.
 - This part seems to be under control and within the original schedule.
- FDIRC Mechanics [Padova + Bari + SLAC]
 - Dummy FBLOCK & New Wedge is being produced (Bari).
 - Detailed mechanical drawings almost ready to start cutting metal (Padova, Bari).
 - Detector holder concept defined. It will be produced at SLAC.
 - Method to generate the laser calibration defined (SLAC, Maryland, Padova).
 - We hope to freeze mechanical drawings by the end of this meeting and start cutting.
 - We are ~2 months late compared to original plans. 24 EForti - Detector Status

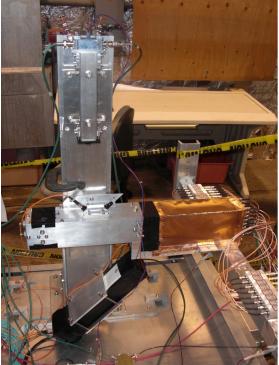
Barrel PID

- H-8500 Detectors [SLAC + Hawaii + Maryland + Bari]
 - SLAC scanning setup re-started. It uses old LeCroy Disc/TDC electronics presently.
 - It is going to be used to qualify 14 H-8500 detectors for CRT tests.
 - The scanning setup will be upgraded later on for the BLAB3 electronics.
 - Similar scanning setups are being prepared in Maryland and Bari.
 - Should be able to finish the detector qualification by summer.

•Electronics [Hawaii + LAL-Orsay + LPNHE-Paris]

- Will start the prototype with BLAB3 electronics. Gary has promissed 7 double-units.
- LAL-Orsay electronics will be available in 2012:
 - Front-end chip and SCAT (100 ps TDC) status: work has started and they applied for a 450 kEuros grant to fund the development of the boards -- decision to be known by the Elba meeting probably

• Definition of tasks/schedule


- Detailed schedule for building of the FDIRC prototype exists.
- Search for participating institutions to take full responsibility continues.

• New collaborators

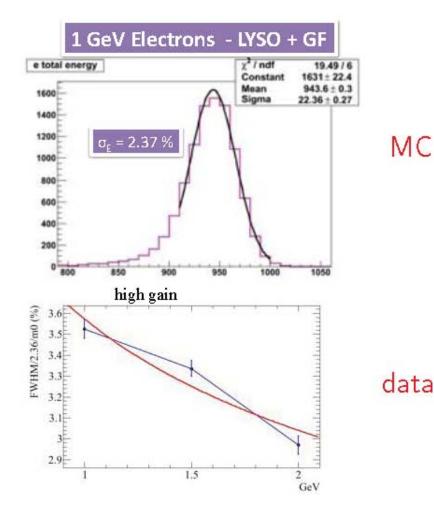
• Continue to work on this issue.

Forward PID

- FARICH [Novosibirsk]
 - Test beam in progress.
- **DIRC-like TOF (FTOF)** [LAL-Orsay + SLAC]
 - Large data sample collected in CRT telescope.
 - Leonid will present results of his analysis in this meeting
 - Detailed MC simulation has been developed to understand the CRT data

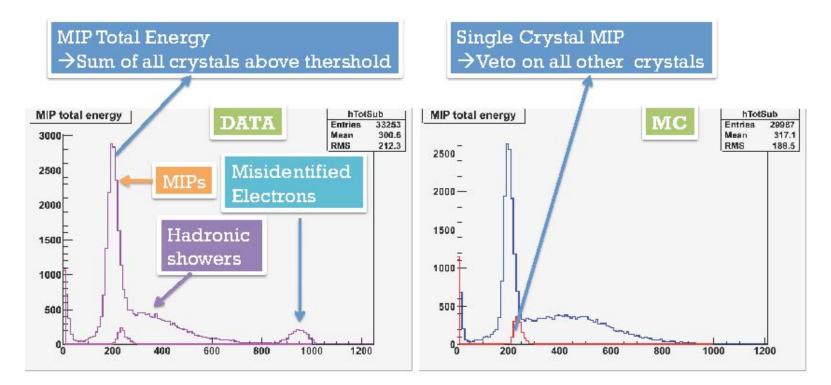
- A simple pixilated TOF using a LYSO crystal + G-APD [SLAC]
 - CRT tests yielded a poor timing resolution with a full size LYSO crystal (σ ~220ps).
 - There will be one more CRT test at SLAC, but it seem unlikely that one can achieve σ ~100ps.

EMC


Claudia Cecchi and Frank Porter

CERN test beam status

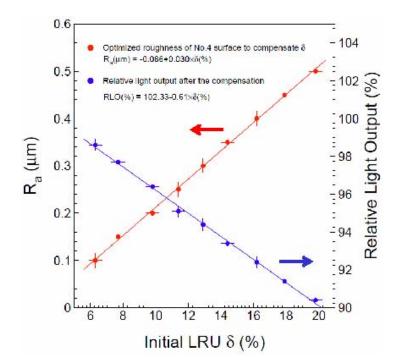
Analysis ongoing Resolution poorer than expected from simulation Ruled out various possible sources Remaining ideas:


- CERN T10 beam spread larger than advertised
- Crystal uniformity not good enough

CERN test beam status - pions

Pi:All X vs 1 X

DATA have smaller fraction of MIPs with only one crystal Hadronic shower energy is different between DATA and MC



Plan for future LYSO test beams

- Test beam at Frascati in May with CERN configuration
- Test beam with further optimized array at Frascati, probably September
 - 2 APDs per crystal (this is proposed design)
 - Crystal uniformity by roughening a face
 - Source calibration of crystals
 - Electronics, APD gain optimized
- Discussions with Carsten Hast about possible tagged-photon test beam at SLAC

LYSO Crystals

- Three vendors make large LYSO(Ce) crystals, SIC, SIPAT, Saint-Gobain
- Developing improved method for uniformization of tapered crystals:
- Test beam uniformization was with black ink band on crystal, costs ~ 40% in light for ~ 5% uniformity
- Investigating uniformization by roughening a crystal face
- Simulation very promising, can correct to better than 5% with few % light loss
- Trying on a real crystal

Simulations

- Fastsim did not include energy smearing for neutrals in September production
 - May affect results for backward EMC studies
- Developed algorithm for applying smearing to ntuples without redoing production (Elisa Manoni)
- Preliminary result shows $\sim 40\%$ decrease in $\delta(S/\sqrt{B})$ in $B^0 \rightarrow K^{*0}(K\pi)\nu\bar{\nu}$ compared with non-smeared analysis

$$\delta\left(\frac{S}{\sqrt{B}}\right) = \frac{\left(\frac{S}{\sqrt{B}}\right)_{bwd} - \left(\frac{S}{\sqrt{B}}\right)_{nobwd}}{\left(\frac{S}{\sqrt{B}}\right)_{nobwd}}$$

$$= (10.9 \pm 3.1)\% \quad (K\pi)$$

$$= (5.9 \pm 2.3)\% \quad (K_s\pi)$$

$$SMEARING = (7.8 \pm 4.2)\% \quad (K\pi^{0})$$

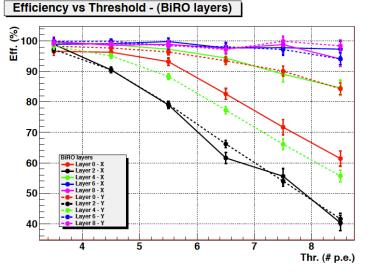
$$\delta\left(\frac{S}{\sqrt{B}}\right) = \frac{\left(\frac{S}{\sqrt{B}}\right)_{bwd} - \left(\frac{S}{\sqrt{B}}\right)_{nobwd}}{\left(\frac{S}{\sqrt{B}}\right)_{nobwd}}$$

$$= (6.5 \pm 2.2)\% \quad (K\pi)$$

$$= (3.2 \pm 1.5)\% \quad (K_s\pi)$$

$$SMEARING = (4.5 \pm 3.2)\% \quad (K\pi^{0})$$

NO


IFR

Roberto Calabrese

Advancements since Caltech:

- Prototype tested (I-7 Dec 2010) at the Fermi
 Test Beam Facility (Meson Area)
- 9 layer configuration tested with different readout schemes (5 BiRO layers and 4 TDC lay
- Beam Test Data analysis ongoing
- Prototype shipped back and reassembled in
 Ferrara (no Iron) to continue the test with cosmics
- New Beam Test foreseen next summer

Review advancements and achievements in all the development areas

Particular focus on beam tests: analysis of the December data and preparation for the new summer beam test

Analyze the TDR preparation process and prioritize the short and medium term activities

Winter 2011

- test prototype with cosmics
- first beam test @ FNAL
- analyze/review test results
- new beam test @ FNAL
 - >analyze/review new test results

▶write TDR

ETD/Online

Dominique Breton, Umberto Marconi, Steffen Luitz

ETD (1)

- Since Caltech, we had a two-day ETD workshop at CERN end of February
 - All groups were represented => discussions were very effective
 - Good progress was done on putting numbers in dataflow and refining the trigger strategy on the front-end
 - \Rightarrow Guidelines for next milestones were defined
 - \Rightarrow Trigger studies really got started
- We will have 3 sessions during this workshop:
 - one concerning front-end electronics
 - one concerning common items
 - one dedicated to hardware trigger
- During the two last sessions, we would like to discuss the following points:
- Clock and control links:
 - Irradiation of the event data SERDES chipset was performed => results will be presented by Raffaele
 - We have to define plans to start qualifying components of the optical layer
 - The use of mezzanines vs firmware blocks has to be discussed again for the FCTS and ROM sides

ETD (2)

- ROM: new steps were made in understanding the solution to be described in the TDR.
 - We have to refine the ratio price/performance/flexibility of the different solutions.
 - A few presentations on these subjects will take place this week.
- Common Front-End Electronics: first simulations of the front-end derandomizer in order to be able to estimate its adequate depth will be presented

• Trigger:

- Separate front-end parameters for trigger and event readout (e.g. in the EMC, different shaping times for trigger and event readout) were studied
 => What is the achievable time precision for the trigger primitives?
- New solutions were presented to extract the trigger primitives from the front-end
 - We would like to standardize the philosophy of the primitives between DCH and EMC
 - EMC primitives could be transmitted on LVDS copper pairs (DCH?)

All these subjects will be analysed in view of the TDR writing.

Agenda

SuperB Workshop

SuperB

All Plenary Sessions will be held in Sala Touschek

Meeting Registration Desk: Monday, April 4, 10:00

Standing Cocktail Reception and guided visit to Villa Grazioli: Tuesday, April 5, 19:30

Frascati	(Italy)
April 4 - 7,	2011

	Monday, April 4		Tuesday, April 5		Wednesday, April 6th		Thursday, April 7th
	PO Meeting	9:00	PLENARY	9:00	PARALLEL 5	9:00	PLENARY MDI
		10	Welcome	Tou	Det Geometry Task Force (open)		SVT
		20	Project Status				DCH
		30	Physics				PID
		60	Theory Seminar (Ali)	Seminari	Computing: Planning		EMC
							IFR ETD
10:00	Registration	11:00	Coffee Break	11:00	Coffee Break	11:00	Coffee Break
11:30	PO Meeting	11:30	PLENARY	11:30	PARALLEL 6	11:30	PLENARY
		30	Accelerator	Tou	Det+Comp: BG + FullSim		Forward PID TF
Seminari	TechBoard	30	Detector	B-1	DG Task Force (closed)		Backward EMC TF
		30	Computing	Seminari	Physics: Other Experiments		Comp Collaborative Tools
							Physics
13:30	Lunch	13:30	Lunch	13:30	Lunch	13:30	Lunch
15:00	PARALLEL 1	15:00	PARALLEL 3	15:00	PARALLEL 7	15:00	
Tou Calcolo	SVT DCH	Tou	Det: ETD 1	B-1	Det: Integration + MDI		
B-1	PID	Seminari	Physics: Charm	Тои	Det: ETD 3	Direzione	Detector Tech Board
A-1	EMC	B-1	Comp: Collab Tools	Seminari	Physics: TDR Organization	Direzione	
Seminari	IFR	A-1	Det: Background		, ,		
Conversi	Comp R&D + TDR						
16:30	Coffee Break	16:30	Coffee Break	16:30	Coffee Break	16:30	Coffee Break
17:00	PARALLEL 2	17:00	PARALLEL 4	17:00	PARALLEL 8	17:00	
Tou	SVT						
Calcolo	DCH	-		Tou	SVT	Direzione	Steering Committee
B-1 A-1	PID EMC	Tou Seminari	Det: ETD 2 Det+Comp+Physics: FastSim	Calcolo B-1	DCH PID	Direzione	Project Board
Seminari	IFR	Seminari	Det+Comp+rnysics. Fastoini	A-1	EMC	Direzione	Project Board
Conversi	Distributed Comp Tools			Seminari	IFR		
18:30		18:30		18:30		18:30	
		19:30	Standing Cocktail Reception and guided visit to Villa Grazioli				
			guided visit to villa Grazioli				
Room Code	Room Codes			Room Codes		Conf. #	Telephone numbers for all calls at:
Tou				B-1	S Aula B-1 - bldg 36	1553	
	Aula Seminari - bldg 36	1550 1551	Aula Direzione - bldg 1	Calcolo	Aula Calcolo - bldg 14	1554	http://server10.infn.it/video/index.
A-1	Aula A-1 - bldg 36	1552		Conversi	Aula Conversi - bldg 57	php?page=telephone_numbers	
<u> </u>				Conversi	Fuild Conversit - Didg St	1333	

Workshop focus

- Review ongoing R&D and detector design
 - Increase mechanical integration effort
- Focus on issues to be resolved for TDR
 - Forward and backward geometry tentative plan to take a decision in Elba.
 - Many more issues in the subsystems
- Advance understanding of backgrounds
 - Dominate detector design in many areas
- Recruit new collaborators
 - Prepare for the First SuperB Collaboration Meeting in Elba

The SuperB Pisa group is happy to announce that the **1st SuperB Collaboration Meeting** will take place in La Biodola, Isola d'Elba, May 28th to June 2nd.

Lying only 10 km from the mainland, Elba is the largest island in the Tuscan Archipelago and has become an internationally famous tourist resort. It offers a large number of attractions, hiking and climbing itineraries, bike trails and wonderful beaches. The excellent accommodation structures make it an ideal place to merge together, work, study and relax.

Click here for a Google map of the meeting site with information

The Registration will open on Thursday, April 7th and the deadline is Sunday, May 15th. Registration form and logistic information are linked from the left menu.

Meeting sessions will start in the morning of Sunday, May 29th and finish in the evening of Wednesday, June 1st.

Participants are expected to arrive on Saturday, May 28th and to leave on Thursday, June 2nd.

Technical Board, Accelerator Board, Project Board and Steering Committee will take place on Thursday, June 2nd, and the attenders are expected to leave on Friday, June 3rd.

http://agenda.infn.it/conferenceDisplay.py?confld=3352

F.Forti - Detector Status

Backup

SVT - Next R&D on pixel for Layer0

- Improvements in MAPS performance being pursued with:
 - ► INMAPS CMOS process with quadruple well + high resistivity substrate: higher charge collection efficiency & rad hardness → design of first prototypes ongoing
 - Solution > 3D MAPS with 2 CMOS tiers interconnected:: higher cce efficiency, more complex in-pixel logic, reduce cross-talk → first chips under test, testbeam in Sep. 2011
- Improved readout architecture developed for pixel with Vertical Integration
 - TimeStamp is latched in each pixel when fired & readout is time ordered.
 - Timestamp granularity 100 ns
 - Readout could work in data push mode & triggered mode
 - VHDL results for 100MHz/cm2 hit rate: Effi_triggered=98.2%, Effi_data_push=99.9%
 - New submission of large 3D MAPS and FE chip for Hybrid pixel (2-tiers), with the improved readout architecture, in preparation for mid 2011
- Vertical interconnection of FE chip (2-tiers) with high resistivity pixel matrix (best technology under investigation) will give the best performance: high S/N and radiation hardness, low power and material budget