FastSim Status

David Brown, LBNL

FastSim Improvements

- Looper hits
- Multiple-scattering simulation and tracking
- Bremsstrahlung fix
- DCH hit merging model

Looper Problems

- FastSim models DC layers as cylinders
 - Hits generated as particle crosses fixed radius
 - Intersections computed using 1st order calculation
- Loopers pass parallel to layers at apogee
 - single hit generated when many cells traversed
 - material can be overestimated
- FastSim fixes
 - Intersections computed using 2nd order calculation
 - # Hits generated = # cells crossed
 - $N_{hits} \simeq pathlength/cellsize + 1$

Multiple Scattering Issue

- PDG $\theta_0 = \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$
 - Describes Gaussian approximation to 98% core
- Used for Crude FastSim Scattering model
 - Double Gaussian, 2% tail with $\sigma = 10X$ nominal
 - Truncated PDG RMS formula for Kalman fit σ
 - Log term fixed to $x/X_0 = 1.6\%$
 - Rough consistency between Sim and Reco

Better Scattering Model

- Computer Physics Communications 141(2001) 230, R. Fruhwirth, M. Liendl, "Mixture models of multiple scattering: computation and simulation"
- Mixture model of Moliere scattering using:
 - Convolution of single scatters (Nscat < 100)
 - Gaussian + ArcCos(theta) tail (x/X0 < 0.1)
 - Double Gaussian (x/X0 < 10)
 - Parameters fit to polynomials
- Efficient MC generation code

CPC141

Implemented in FastSim

Normalized scattering angle

Kalman Fit Scattering

- KF requires a single σ to model scattering
 - truncated approximation to Moliere scattering
 - PDG formula not adequate after sim improvements
- NIMB 58 (1991) 6-10 (Lynch, Dahl)
 - Source of "PDG" formula and description
 - Also better approximation based on <# of scatters>
 - accurate to 2%, $x/X_0 > 10^{-3}$
 - Tunable parameter F = tail truncation factor
- Now Implemented in Kalman filter fit
 - Caveat: Z_{eff} and A_{eff} gives wrong (linear) weighting

FastSim Kalman Fit

pulls,

fit

0.8

1

10

Bremsstrahlung in FastSim

- 2010 code had a serious bug
 - *#* of Brems photons under-estimated
 - electron energy loss under-estimated
- (New) FastSim model based on PDG formula

$$N_{\gamma} = \frac{d}{X_0} \left[\frac{4}{3} \ln \left(\frac{k_{\max}}{k_{\min}} \right) - \frac{4(k_{\max} - k_{\min})}{3E} + \frac{(k_{\max} - k_{\min})^2}{2E^2} \right]$$

•
$$k=E_{\gamma}, E=E_{e,} d \ll X_0$$

Brems energy lost in every e material passage

- Only 'high-E' photons become particles
- energy loss from integrated low-E photons modeled

FastSim Brems Simulation

Bremsstrahlung events

Brems splitting

Cluster broadening

Brems splitting

DCH Hit Merging

- Previous model: In-time Hits in same cell are merged
 - Position is averaged
 - merged hit assigned to higher-momentum track
- New model: Early hit wins
 - Drift time simulated using random impact parameter
 - cell size, V_{drift} set in view configuration
 - Early hit assigned to higher-momentum track if consistent ($0 < T_{drift} < R_{cell}/V_{drift}$)

FastSim ToDo

- Fix Si pattern recognition simulation
 - broken since 'looper' fix
- Si striplets
 - need 45 strips, short strips
- Cluster shape testing/tuning after Brems fix?
- Energy Straggling model needs improvement
- Public FastSim Package

Joint Issues

- Physics Tools for SuperB
 - tagging, primary vertex, ...
- Background production?
- Physics TDR needs?