

infn perugia

Updated study of Had Recoil B→K*vv vs Bwd EMC

Det + Comp + Physics: FastSim + detector + DGWG - SuperB workshop, LNF, April 05, 2011

April 05, 2011

Outline

- Neutral energy smearing algorithm
- Patch validation

Super

- Results on Bwd EMC veto impact

Motivations and analysis strategy

- September production ntuple: neutral energy smearing not applied
- @ Caltech: analysis of September sample to evaluate the impact of Bwd
 EMC used as veto device
- → without smearing, results can be too optimistic
- Need to re-compute impact of Bwd EMC veto including resolution effects:
 - make a new production for the BBbar sample is too time consuming
- → apply smearing off-line
 - validate smearing algorithm on signal and single particle MCs
 - apply off line smearing on both BBbar and signal samples from September production
 - repeat the analysis and compare S/sqrt(B+B) w and w/o Eextra_bwd veto

FastSim energy smearing algorithm (I)

- BaBar EMC energy resolution: $\sigma(E)/E = 2.35\%/E^{(1/4)} + 1.35\%$

- Energy resolution parameterization in FastSim: gaussian component: σ(E)/E = fa/E^(ep) +o fb
 + exponential tail: τ= cexp/E^(pexp) +o dexp
- parameter values :

par	fwd	brr	bwd
fa	0.0102	0.0102	0.14
fb	0.0	0.0	0.03
ep	0.264	0.264	0.5
cexp	0.0165	0.0165	0.0
dexp	0.0284	0.0284	0.0
pexp	0.05	0.050	0.0

uper

FastSim energy smearing algorithm (II)

- Experimental effects accounted in FastSim:
 - global EMC calibration: apply scaling factor to recover part of the cluster not contained
 - background cluster effects: once the "physics" cluster has been reconstructed, switch on random crystals around the cluster
 - energy smearing due to finite resolution

smearing parameter:

 $\delta E = gaussRnd(0, \sigma(E)) - expRnd(\tau(E))$

gaussRnd/expRnd = random numbers generated according to gaussian/exponential distribution (function of resolution params)

→ smeared energy: $E_{\text{meas}} = E_0 * (1+\delta E)$

FastSim energy smearing algorithm (III)

- September production:
 - global EMC calibration ON
 - background cluster effects ON
 - energy smearing due to finite resolution OFF

Patch validation

old prod, no off-line smearing
 2) Production without energy smearing

new prod, on-line smearing

1) is obtained starting from 2) and applying the smearing algorithm, it aims to reproduce 3)

3) Production with energy smearing

 \rightarrow black histo and blue + should match

elisa manoni

+

B⁰ \rightarrow K^{*0}vv signal MC: sample and selection

- sample:
 - ~3M events from September production (V0.2.5 FastSim release, smearing OFF)
 - ~10M events with V0.2.6 FastSim release (smearing ON)
- generate B⁰→K^{*0}vv vs B⁰bar→ hadronic modes
 reconstruct with PacHadRecoilUser package (FastSim package for hadronic Breco analysis)
- selection
 - examine all reconstructed γ (irrespective of their origin, i.e. γ from any decay product of both Breco and Bsig)
 - thruth matching: reco photons associated to one photon in the MC list

uper

April 05, 2011

$B^0 \rightarrow K^{*0}vv$ signal MC : γ energy (I)

E_{true} – E_{reco} in bins of E_{true}, truth-matching required

$B^0 \rightarrow K^{*0} v v$ signal $MC : \pi^0$ mass

- list-level cuts and fit constraints not reproduced applying smearing after reconstruction, see slide 14 for single π^0 beam results

Single π^0 : sample and selection

- sample:
 - 500K events with V0.2.6 FastSim release and smearing OFF
 - 500K events with NOMINAL V0.2.6 FastSim release (smearing ON)
- π^0 list
 - γs from CalorNeutral list,
 - γγ invariant mass cut: [0.090,0.165] GeV
 - Pmin set 0.05 GeV, Pmax set 4.0 GeV
 - CosThetamin set -1, CosThetamax set 1
- selection
 - 1 reco π^0
 - thruth matching: π^0 reco daughters associated to 2^{nd} and 3^{rd} particle in the MC list (to cut reco γ matched with bremmstrahlung γ produced after $\gamma \rightarrow e^+e^-$ conversion)

elisa manoni

infn perugia¹³

uper

April 05, 2011

Single π^0 : π^0 mass

Single γ : sample and selection

- sample:
 - 500K events with V0.2.6 FastSim release and smearing OFF
 - 500K events with NOMINAL V0.2.6 FastSim release (smearing ON)
- $-\gamma$ list
 - CalorNeutral list
 - Pmin set 0.05 GeV , Pmax set 4.0 GeV
 - FULL ANGULAR COVERAGE : CosThetamin set -1, CosThetamax set 1
 - BWD REGIONS: CosThetamin set -1, CosThetamax set -0.9

CosThetamin set -0.9615, CosThetamax set -0.8815

- selection
 - 1 reco photon
 - thruth matching: reco photon associated to 1st particle in the MC list (to cut reco γ matched with bremmstrahlung γ produced after $\gamma \rightarrow e^+e^-$ conversion)

April 05, 2011

Single γ – full angular coverage : γ energy (I)

 $- E_{true} - E_{reco}$ in bins of E_{true} , truth-matching required

elisa manoni

infn perugia¹⁷

April 05, 2011

Single γ – BWD angular coverage : γ energy (I) SuperB

 $- E_{true} - E_{reco}$ in bins of E_{true} , truth-matching required

April 05, 2011

DCH

beam pipe

DCH ELECT

BCAL

Single γ – BWD angular coverage : γ energy

- Angular coverages:
 - CosTheta [-1,-0.9] (BLACK)
 - CosTheta [-0.9615,-0.8815] (RED)

April 05, 2011

Single γ – BWD angular coverage : γ energy resolution

elisa manoni

infn perugia²⁰

Physics results

April 05, 2011

Eextra BWD distributions, after Bsig selection $-B^+ \rightarrow K^{*+}(K_s \pi) \nu \nu$

elisa manoni

elisa manoni

SuperB workshop, FastSim + DGWG April 05, 2011 Eextra BWD distributions, after Bsig selection $B^0 \rightarrow K^{*0}(K\pi)\nu\nu$ Eextra bwd w smearing - Eextra bwd w/o smearing bwd E_{extra} after selection, backward, signal E_{extra}^{bwd} , smearing - E_{extra}^{bwd} , no smearing, signal 10³ - without smearing + with smearing signal 0.5 10² 10 -0.5 0.9 1 E_{extra} (GeV) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 B_{extra}^{4} , 0.5 0.6 0.7 0.8 0.9 1 B_{extra}^{bwd} , smearing - B_{extra}^{bwd} , no smearing (GeV) 0 0.1 0.2 0.3 Eextra after selection, backward, BBbar E_{extra}^{bwd} , smearing - E_{extra}^{bwd} , no smearing, BBbar 10² BB 10 cocktail -3 0.9 1 E_{extra} (GeV) 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.1 0.2 0.3 0

elisa manoni

Results: satrtegy

- Eextra_bwd < 50 MeV, $E_{min,\gamma}$ = 30 MeV
- Changes wrt to Preliminary results shown in

http://agenda.infn.it/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=3464

- fixed bug in Bwd-Barrel angular coverage
- fixed bug in extra-photon finding algorithm (some of the Breco modes where not incorporated in the study)
- remove cut on Eextra_barrel+fwd (uncorrelated to Eextra_bwd) to increase the statistics
- Figure of Merit
 - Significance =S/sqrt(S+B)
 - ΔSignificance/Significance = (Sig_bwd-Sig_nobwd)/Sig_nobwd
 - in the limit S<<B:

$\Delta Significance/Significance = (\epsilon_sig/sqrt(\epsilon_bb)) - 1$

being ϵ_{sig} (ϵ_{bb}) the marginal efficiency of the Eextra_bwd cut in signal (BBbar) MC sample

Results : relative change in significance

SMEARING OFF				
$B^0 o K^{*0} u ar{ u}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^0 o K^{*0} u ar{ u}$	786	778	$(99.98 \pm 0.36)\%$	
B^0 had cocktail	181	143	$(79.0 \pm 3.0)\%$	
$\Delta Sign/Sign$	/Sign (11.4 ± 1.9)%			
$B^+ ightarrow K^{*+}(K_S \pi^+) u ar{ u}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ \to K^{*+} \nu \bar{\nu}$	233	232	$(99.57 \pm 0.43)\%$	
B^+ had cocktail	136	114	$(83.8 \pm 3.2)\%$	
$\Delta Sign/Sign$	$(8.7 \pm 1.9)\%$			
$B^+ ightarrow K^{*+} (K^+ \pi^0) u ar{ u}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ o K^{*+} \nu \bar{\nu}$	227	222	$(97.8 \pm 1.0)\%$	
B^+ had cocktail	75	65	$(86.7 \pm 3.9)\%$	
$\Delta Sign/Sign$	$(5.0 \pm 2.4)\%$			

SMEARING ON				
SMEARING ON				
$B^0 o K^{*0} u ar{ u}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^0 o K^{*0} u ar{ u}$	786	778	$(99.98 \pm 0.36)\%$	
B^0 had cocktail	181	146	$(80.7 \pm 2.9)\%$	
$\Delta Sign/Sign$ (10.2 ± 1.8)%			$\pm 1.8)\%$	
$B^+ o K^{*+}(K_S \pi^+) u ar{ u}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ \to K^{*+} \nu \bar{\nu}$	233	232	$(99.57 \pm 0.43)\%$	
B^+ had cocktail	136	114	$(83.8 \pm 3.2)\%$	
$\Delta Sign/Sign$	$(8.7 \pm 1.9)\%$			
$B^+ ightarrow K^{*+} (K^+ \pi^0) u ar u$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ \to K^{*+} \nu \bar{\nu}$	227	221	$(97.4 \pm 1.1)\%$	
B^+ had cocktail	75	65	$(86.7 \pm 3.9)\%$	
$\Delta Sign/Sign$	$(4.6 \pm 2.4)\%$			

Superi

Conclusion

- Algorithm to apply off-line neutral energy smearing in place
- algorithm validated on gamma and π^0 single particle beams and signal MC
- still some issue on Bwd EMC simulation in FastSim under study
- Negligible effect of smearing on physics result:
 5-10% gain in significance with Eextra, bwd veto

Back-up slides

infn perugia ³⁰

Caltech results

– Eextra_bwd< 0.05 GeV:

SuperB

$B^0 \to K^{*0} \nu \bar{\nu}$					
Sample	$N_{ m sel}$	$\varepsilon_{ m tot}$	$N_{ m sel,Bwd}$	$\varepsilon_{ m tot,Bwd}$	$\delta \varepsilon / \varepsilon$
$B^0 \to K^{*0} \nu \bar{\nu}$	727	$(24.5 \pm 0.9) \times 10^{-5}$	719	$(24.2 \pm 0.9) \times 10^{-5}$	$(-1.1 \pm 0.4)\%$
B^0 had cocktail	76	$(20 \pm 2) \times 10^{-8}$	60	$(16 \pm 2) \times 10^{-8}$	$(-21 \pm 7)\%$
S/\sqrt{B}	83 ± 7		93 ± 9		
$B^+ \rightarrow K^{*+}(K_z \pi^+) \nu \bar{\nu}$					
Sample	$N_{\rm sel}$	$arepsilon_{ m tot}$	$N_{ m sel,Bwd}$	$\varepsilon_{ m tot,Bwd}$	$\delta \varepsilon / \varepsilon$
$B^+ \rightarrow K^{*+} \nu \bar{\nu}$	223	$(7.1 \pm 0.5) \times 10^{-5}$	222	$(7.0 \pm 0.5) \times 10^{-5}$	$(-0.5\pm0.4)\%$
B^+ had cocktail	48	$(12.0 \pm 1.7) \times 10^{-8}$	40	$(10.0 \pm 1.7) \times 10^{-8}$	$(-17 \pm 7)\%$
S/\sqrt{B}		32 ± 4	35 ± 5		

$$\delta\left(\frac{S}{\sqrt{(B)}}\right) = \frac{\left(\frac{S}{\sqrt{(B)}}\right)_{bwd} - \left(\frac{S}{\sqrt{(B)}}\right)_{nobwd}}{\left(\frac{S}{\sqrt{(B)}}\right)_{nobwd}} = \frac{K\pi : (10 \pm 3)\%}{K_s\pi : (8 \pm 3)\%}$$

elisa manoni

infn perugia³¹

$B^0 \rightarrow K^{*0}vv$ signal MC : γ angle

- $\theta_{true} - \theta_{reco}$ in bins of E_{true} , truth-matching required

- NO ANGULAR SMEARING APPLIED: red and black matches (same sample)
- large tails due to reco gamma not correctly matched (probably associated to bremmstrahlung $-\gamma$ produced after $\gamma \rightarrow e^+e^$ conversion), improvements in single

particle tests with more stringent matching requirements (slide 33)

Superi

April 05, 2011

Single π^0 : γ angle

- $\theta_{true} - \theta_{reco}$ and $\phi_{true} - \phi_{reco}$ in bins of E_{true} , truth-matching required

SuperB workshop, FastSim + DGWG

April 05, 2011

Eextra distributions, before Bsig selection - $B^+ \rightarrow K^{*+}(K_s \pi) \nu \nu$

elisa manoni

-35 infn perugia

(GeV)

April 05, 2011

Eextra distributions, before Bsig selection $B^+ \rightarrow K^{*+}(K\pi^0)\nu\nu$

April 05, 2011

Results : significance-flow in $K\pi$

elisa manoni

uper

Results with Eextra_brrfwd cut

SMEARING ON, E_{extra}^{brrfwd} cut				
$B^0 o K^{*0} u ar{ u}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^0 o K^{*0} u ar{ u}$	735	727	$(98.91 \pm 0.38)\%$	
B^0 had cocktail	91	75	$(82.4 \pm 4.0)\%$	
$\Delta Sign/Sign$	$(8.9 \pm 2.4)\%$			
$B^+ \rightarrow K^{*+}(K_S \pi^+) \nu \bar{\nu}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ o K^{*+} \nu \bar{\nu}$	191	190	$(99.48 \pm 0.52)\%$	
B^+ had cocktail	76	66	$(86.8 \pm 3.9)\%$	
$\Delta Sign/Sign$	$(6.7 \pm 2.3)\%$			
$B^+ ightarrow K^{*+} (K^+ \pi^0) u ar{ u}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ \to K^{*+} \nu \bar{\nu}$	214	208	$(97.2 \pm 1.1)\%$	
B^+ had cocktail	40	33	$(82.5 \pm 6.0)\%$	
$\Delta Sign/Sign$	$(7.0 \pm 3.7)\%$			

elisa manoni