

Update on DCH Background Study with Bruno

Riccardo Cenci University of Maryland

SuperB General Meeting, Frascati (ITALY)

Apr 4th, 2011

Status and Outline

- •After the December meeting:
 - Method to compute the occupancy has been checked, Ok
 - Problem: inconsistency in the results is likely due to approximate simulation of low energy em processes, results are ok using only tracks with Einc > 5MeV
 - Problem: increase in occupancy using the new geometry with extended pipes

•Outline:

- Optional geometry for testing the new forward PID detector
- High occupancy with Dec 2010 geometry (already covered by Dana)
- Understanding the simulation using single particles, alternatives to limit step size in Dch volume

Optional Geometry for fTOF test

- Request to make room for new fTOF geometry
 - Short Dch, 5 cm
 - Move Drc 5 cm in bwd direction
 - It's not possible to move Emc, projective geometry of crystals
- Committed in r418
 - Optional geometry, need to modify main gdml (instructions per email and on svn comment)
 - Add also tungsten shielding extension made by Eugenio
- Overlaps checks done, ok

EMC old fTOF DRC DCH

•fTOF, DCH, DRC

•fTOF, DCH, DRC •Space between the two

•Space between the two dashed lines

EMC DCH shield fTOF DRC/DCH

SuperB General Meeting, Apr 4, 2011

Riccardo Cenci

Riccardo Cenci

High occupancy with Dec 2010 geometry

New productions

- •RadBhabha, samples of 50k evts
- •New CIPE geometry (Frascati 2011)
 - Extended pipes
 - Full shielding and plugs
 - New magnets configuration
- •Two samples:
 - Default configuration
 - Step length limited at 1mm in the Dch gas volume

Occupancy per layer, RadBhabha

Occupancy back to normal level, smaller than before
Confirmed over-estimation if no step limit

Simulating single particles...

Method validation

- Trying to get a flat rate for single particle
 - Muons, 1 TeV, theta 90 degrees
 - •2 MHz freq, 2 muons per DCH integrating time
 - Approx 120-250 cells per layer, ~1% occupancy expected

Validation

• Comparison between muons of 1 TeV and 1 GeV

Validation

Comparison between muons and electrons of 1 GeV
No difference between electrons and positrons

Riccardo Cenci

SuperB General Meeting, Jan 31, 2011

More validation

- Rate flatness over each super-layer
- Muons, 1 GeV, theta 90 degrees
- Removing hit from electrons rate is even more flat
 - Pure geometric cause: additional rate depends only from cell phi angle, not from cell size
 - Layers around 5 and 30 have the same numbers of cells
 - Phi angle of the track between entering and leaving point in the cell vs phi angle of the cell

Update on validation

Track 1 fires one cell on each layer
Track 2 fires one cell on first layer and two on the second
Phi angle of the track when enters and leaves the cell

More single particles...

Low energy electrons, 1.5 MeV, 45 degrees, pT = 1 MeV, radius 2.2 cm, 23-30 cm from IP
They should fire around 2 cells per layer -> rate 4 MHz

Electrons are supposed to go along z: it's not true, hits above layer 5
Multiple scattering plays an important role

Smart single particles...

- Electrons at different energies, but same transverse momentum: 1 mm of helix radius
 - 1 GeV, 100 MeV, 10 MeV, 1 MeV
- Electrons located at one specific point of Dch:
 only one cell fired
- 4 configuration: no step ⁻⁶⁰ limit, 10mm, 5mm, 1mm ⁻⁸⁰
- Expected rate: 2 MHz

Smart single particles...

- Electrons at different energies, but same transverse momentum: 1 mm of helix radius
 - 1 GeV, 100 MeV, 10 MeV, 1 MeV
- Electrons located at one specific point of Dch: only one cell fired
- 4 configuration: no step limit, 10mm, 5mm, 1mm
- Expected rate: 2 MHz

Single electrons, 1 GeV

Default configuration
Without step limit rate is above 2 MHz

Single electrons, 1 MeV

- Default configuration
- Without step limit rate is above 2 MHz

•Bigger effect at low energy •Only simulation with 1 mm step limit gives good results •When G4 applies the multiple scattering correction for a long step, the description is not accurate •General overestimation of occupancy

Single electrons, 1 MeV, no MSc

Multiple scattering can be disactivated
Rates are consistent with different step limits

More configurations...

- Other physics lists (default is **QGSP_BERT**):
 - QGSP_BERT_EMV: parameters of electromagnetic processes tuned to yield better cpu performance with only slightly less precision
 - **QGSP_BERT_EMX**: sub-cutoff option for ionisation processes and higher production threshold than in default EM physics
 - QGSP_BIC_EMY: most advanced options allowing precise simulation at low and intermediate energies
 - QGSP_BERT_eLoss0.1, QGSP_BERT_eLoss0.01: limit on energy loss per step, 10% and 1%
 - QGSP_BERT_MscPlus: improved parameters for multiple scattering
 - QGSP_BERT_EMNR: single Coulomb scattering process instead of the multiple scattering for ions with energy less than 100 MeV/nucleon
 - QGSP_BERT_EMGS: Goudsmit-Saunderson multiple-scattering model
 - QGSP_BERT_EMSS: single Coulomb scattering instead of multiple scattering

More configurations...

Single electrons, 1 MeV, SS

- Single Coulomb scattering
- Rates are consistent with different step limits

Using only this in full simulation increases a lot the running time
Thanks to Andrea, now we can enable it only in a specific region (done in my private release, not committed yet)

Single electrons, 1 MeV

Single Coulomb scattering vs 1 mm step limit
Small difference

•IMHO, we should use single scattering, because it allows us to have a reliable simulation in the gas volume w/o introducing artificial parameters

Summary

• Culprit of dependance from step size limits is the multiple scattering	Radiative Bhabha	
• Bkg is always overestimated: from some dedicated simulation with SS	(100 evts)	
• Solution 1: simulating track in Dch with reduced step, 10, 5 or 1 mm	Prod 2011 CIPE geom	
Artificial parameter	Prod 2011	
 Bigger files and longer running time 	CIPE geom 1 mm step	
• Solution 2: single Coulomb scattering	limit	
(activated only for the gas volume)	My Prod	
 No artificial parameters 	CIPE geom Single Scat	
 Same files size and running time 		

eom step t	21h	478M	
od eom Scat	17.3h	395M	
SuperB General Meeting, Apr 4, 2011			

CPU time File size

400M

19h

Occupancy per layer, RadBhabha

• Single scattering simulation comparable with multiple scattering plus 1 mm step limit

Conclusions

- Optional geometry for testing the new forward PID detector
- Confirmation that high occupancy with Dec 2010 geometry was due to extended pipes and missing shielding/plugs
- Using the single particles:
 - Occupancy algorithm has been validated
 - Multiple scattering effect on Dch track has been understood
- Reliable simulation for Dch tracks can be obtained using:
 - 1 mm step limit in the Dch volume (artificial parameter)
 - Replacing multiple scattering with single scattering in the Dch volume

SuperB General Meeting, Apr 4, 2011

• New fTOF geometry, FTOFnewGeometry04022011.gdml provided by Leonid Burmistrov

