Final Focus latest developments

Alejandro Pérez Eugenio Paoloni INFN – Sezione di Pisa

SEZIONE DI PISA

Outline

- Plug and Horseshoe implementation
- Beam pipes implementation from Mike Sullivan's design
- Detector Hall
- Bruno latest developments:
 - Magnetic datacard
 - Rad-Bhabha: IP datacard
- Summary

New Final Focus (FF) mother volume (Fwd)

Increased FF mother volume around 2.4 and 3.8 m taking care on not touching IFR mother volume

New FF mother volume (Bwd)

The Plug profile

- Use some BaBar drawings as reference for the dimensions
- Try to include particularities of SuperB design (FF tungsten shield)

The Horseshoe profile

- Use some BaBar drawings as reference for the dimensions
- Try to include particularities of SuperB design (FF tungsten shield)

Some plots (Fwd Plug)

Some plots (Fwd Plug)

Some plots (Bwd Horseshoe)

Previous beam pipes profile

V12 SF11 nominal trajectories

- Beam pipe design only up to ~2m from IP
- After that only have beam envelop (10× $\sigma_{_X}$ and 10× $\sigma_{_Y}$ beam sizes) up to $\pm 16m$ from IP
- Essentially two horizontal tilt before 1st bend:
 - 30mrad near IP (Z < 0.6m)
 - 27 mrad up to 1st bend
- Will try to use two straight sections for the beam pipe modeling

V12 SF11 beam pipes profile (I)

V12 SF11 beam pipes X-Rays (I)

V12 SF11 beam pipes X-Rays (II)

Alejandro Pérez, Det + Comp: BG + FullSim parallel session, April 6th 2011

V12 SF11 beam pipes X-Rays (III)

V12 SF11 beam pipes X-Rays (IV)

Alejandro Pérez, Det + Comp: BG + FullSim parallel session, April 6th 2011

New beam pipes model in Bruno

Detector Hall

Bruno development: Magnetic IR

Previously:

- Final focus magnetic field was hard-coded inside Bruno
- Difficult to follow the evolution of the final focus design
- Currently: (Need to document this in the wiki)
 - Modified Bruno to use a magnetic layout input datacard

http://mailman.fe.infn.it/superbwiki/index.php/Bruno_Invocation

- Datacard structure: define a list of magnetic elements (cylinders)
- New parameters (Radius_int, ConstantRadialBField). Need final testing BeginMagneticElement

Bruno development: bbbrem IP parameters

- Previously: Bbbrem generator (Radiative Bhabha) needs beam IP parameters for luminosity calculation
 - IP parameters were hard-coded inside Bruno (src/BbbremGenerator.cc)
 - Difficult to follow the evolution of the final focus magnetic layout
- Currently: (Need to document this in the wiki)
 - bbbrem generator reads an input datacard with IP parameters (/generator/bbbrem/IPdatacard)
 - New parameter: IP location (IP_coor). Need final testing

HER parameters	LER parameters
her_energy 6.69 her_pdt -11 her_sigma_x 7.334e-3 her_beta_x 26.0 her_sigma_y 36.0e-6 her_beta_y 253.0e-3 her_sigma_z 5.0 her_deltaEoE 1.0e-3 her_alpha_z -30.0e-3 her_npart 5.08e+1	GeV ler_energy 4.18 GeV ler_pdt 11 mm ler_sigma_x 8.701e-3 mm mm ler_beta_x 32.0 mm mm ler_sigma_y 35.0e-6 mm mm ler_beta_y 205.0e-3 mm mm ler_sigma_z 5.0 mm ler_deltaEoE 1.0e-3 ler_npart 6.56e+10
IP_coor	0.0 0.0 0.0 mm (default is (0,0,0))

Summary and outlook

- Final focus is well shielded: extended Tungsten shield, Plug and Horseshoe in place
- Beam pipe profile: simple approach gives good results,
 - Two straight section: 30mrad (< 0.6 m) and 27mrad (> 0.6)
 - Use Mike Sullivan's radius profile up to ~2m from IP
 - From that point on use constant radius pipes (29 mm)
 - Beam pipe modeled up to ± 16 m from IP (including bending magnets)
- Detector hall:
 - Concrete wall (polycone with simple profile)
 - Silicon scoring planes for FEE studies (Eugenio Paoloni)
- Bruno developments:
 - Magnetic datacard new parameters: internal radius and radially constant B-field
 - Rad-Bhabha generator IP datacard: new IP location parameters
- Next steps:
 - Implementation of magnetic elements material
- Diag36 (2-photon background) generator inside Bruno Alejandro Pérez, Det + Comp: BG + FullSim parallel session, April 6th 2011

V12 SF11 nominal trajectories

Beam pipes profile: LER Downstream

Alejandro Pérez, Det + Comp: BG + FullSim parallel session, April 6th 2011

Beam pipes profile: LER Upstream

Alejandro Pérez, Det + Comp: BG + FullSim parallel session, April 6th 2011