Updated study about the impact of the forward PID material on the EMC

M. Rama/A. Stocchi on behalf of the DGWG Joint meeting of detector geometry task forces, 6 Apr 2011

Studies discussed at CalTech (Dec 2010)

potential pros and cons studied so far

Backward EMC:

increased EMC angular coverage

tested with:

-) $B \rightarrow K^{(*)} \nu \nu$ and $B \rightarrow \tau \nu$ physics reach

reduction of the drift chamber length

tested with:

-) track & B reco. vs DCH length

Forward PID:

increase of PID efficiency

- tested with:
 - -) $B \rightarrow K^{(*)} \nu \nu$ and $B \rightarrow \tau \nu$ physics reach

material in front of the forward EMC

tested with:

-) Geant4 study and FastSim study

reduction of the drift chamber length

tested with:

-) track & B reco. vs DCH length

M. Rama - LNF SuperB meeting

Updated studies discussed today

potential pros and cons studied so far

Backward EMC:

increased EMC angular coverage

tested with:

-) $B \rightarrow K^{(*)} \nu \nu$ and $B \rightarrow \tau \nu$ physics reach

reduction of the drift chamber length

tested with:

-) track & B reco. vs DCH length

Forward PID:

increase of PID efficiency

tested with:

-) $B \rightarrow K^{(*)}vv$ and $B \rightarrow \tau v$ physics reach

material in front of the forward EMC

tested with:

-) Geant4 study and FastSim study

reduction of the drift chamber length

tested with:

-) track & B reco. vs DCH length

M. Rama - LNF SuperB meeting

Material in front of the forward EMC

study done by Stefano Germani

Single photons or single pi0s are simulated in Geant4 and shot in the forward region Machine background is superimposed

The candidate photon is associated to the cluster with the smallest angle with respect to the MC truth

For the Fwd energy resolution only clusters with an angle < 2 deg are considered

M. Rama - LNF SuperB meeting

6/4/2010

FTOF and FARICH geometries in Geant4

Fwd PID geometry options

Photon reconstructed energy in fwd region

S. Germani

Fwd Emc Measured Energy Distribution

Photon energy resolution in fwd region

Fwd EMC Energy Resolution

6 FWHM/2.36 [%] No Fwd PID **fTOF** 5 FARICH 3 2 0 10² 10³ E_v [MeV]

M. Rama - LNF SuperB meeting

S. Germani

8

S. Germani

Fwd EMC γ Efficinecy γ Efficiency vs Energy 울¹⁰⁰ No Fwd PID eff(FARICH)>eff(fTOF) പ്പ 98 - ftof (but single points are 96 - FARICH 94 stat. compatible) 92 E 90 F 88 can it be due to different placement of fTOF compared 84 to FARICH? 82 80 10² 10³ E., [MeV]

Due to the lack of tracking reconstruction with the angle selection some of the upstream converting photons are lost.

Clusters with angle-energy correlation for upstream converting $\gamma @ 1$ GeV are

- ~ 12% for No Fwd PID and FARICH
- $\sim 15\%$ for fTOF

π^0 s reconstructed in fwd EMC

<u>π⁰ Mass</u>

D

Fwd PID Effects on EMC

 $-\gamma$

- fTOF and FARICH effects on photons energy resolution are negligible
- FARICH effects on photon detection efficiency is negligible
- fTOF effect on photon detection efficiency is very small

– Π°

- fTOF and FARICH effects on pions mass resolution are negligible
- fTOF and FARICH effects on pions detection efficiency is small

Summary

Summary I

Forward PID:

increase of PID efficiency

- -) 2.0-2.5% efficiency gain per identified K[±] . Therefore:
 - The efficiency of signal + Breco tag increases by ~4.5% (~2.5%) when there is (not) a K^{\pm} in the signal final state
 - The Breco tag background increases as well (~2.5%). No significant background increase in the signal-side (errors still large)
 - S/sqrt(S+B) increases by ~I-4 % depending on the mode

material in front of the forward EMC

-) Effect of fTOF or FARICH material on photon and p0 reconstruction seems to be negligible or small according to the current studies

reduction of the drift chamber length

-) ~1% relative efficiency loss in $B \rightarrow \pi^+ \pi^-$ or $B^+ \rightarrow D^{*-}K^+$ with a 20cm shorter DCH (FARICH)

-) Moderate worsening of dE/dx K/ π separation in forward region with FARICH. E.g: -0.2 σ at 2.5 GeV at θ =23deg.The variation is largely compensated by the fwd PID performance.

Summary II

Backward EMC:

increased EMC angular coverage

-) S/sqrt(S+B) increase:

-)3-6% with $B \rightarrow K(*)vv$ SL tag, $B \rightarrow \tau v$ HAD/SL tag

-)5-10% with $B \rightarrow K^{(*)}vv$ HAD tag (larger uncertainty)

reduction of the drift chamber length

-) ~0.5% relative efficiency gain if the DCH is 20cm longer (no backward EMC)

-) Moderate improvement of dE/dx K/ π separation in backward region with no bwd EMC. E.g: +0.4 σ at 2.5 GeV at θ =150deg. But variations may be compensated by a possible PID capability of the bwd EMC.

backup

π⁰ Mass and Efficiency vs Energy

2 Photons in the Fwd region

Cluster Angle wrt Photon

S. Germani

E_{reco}/E_{γ} vs time window width

Time Window Width S. Germani

M. Rama - LNF SuperB meeting

fwd EMC: E resolution vs PID material

PID Thickness Effect on $\sigma_{\rm E}$

S. Germani

Preliminary results. Since the bkg makes the E distribution more Gaussian, it is assumed in these plots that the FWHM is a good estimator.