Integrated front-end for drift chambers

S. D'Amico^{1,2}, G. Cocciolo^{1,2} ¹Dip. di Ingegneria dell'Innovazione - Univ.del Salento ²INFN-Lecce

Frascati, 4th of April 2011

Overview

- •Integrated front-end architecture
- •I complete version of the front-end:
 - •Circuits description
 - Measurements&performance
- •II complete version of the front-end:
 - Circuits description
 - •Preliminary Measurements
- •Conclusions

Front-end architecture

-Amplifier (single ended to differential conversion, 26dB gain)-ADC(6 bits resolution, 1Gs/s)

-LVDS drivers

-buffers

I complete version: the amplifier

I complete version: the ADC

I complete version: details of the ADC

I complete version: Chip Microphotograph

Technology: CMOS 0.13um Chip size: 3mmX1.5mm

I complete version: experimental results

Measurements on the amplifier

Amplifier transfer function DC – gain:20 dB (gain loss due to the internal resistance of the signal source) BW_{-3dB}: 870 MHz

1 dB compression point: -11.8 dBm of input signal level

I complete version: experimental results

SNR, SNDR vs input frequency

SNR, SNDR vs samply frequency with input frequency of 100MHz

I complete version: experimental results

	Parameter	Value
	Technology	CMOS 0.13um
	Supply voltage	1.2V
	Chip area	3050x1525um ²
	DC-gain	20 dB
Amplifier	BW _{-3dB}	870 MHz
	1 dB compression point	-11.8 dBm
	Amplifier current consumption	25mA
	SNDR@100MHz	23dB
ADC	SNR@100MHz	27 dB
	ADC current consumption	79mA

Il complete version: opamp schematic

Two stages Miller opamp

Il complete version: ADC architecture

Il complete version: ADC details

Il complete version: Chip microphotograph

Technology: CMOS 0.13um Chip size:1525umx1525um

Il complete version: Measurements setup

Il complete version: Preliminary results

Power consumption

Section	Consumption (mA)
Analog (ADC+amplifier)	50
Digital	8
Bandgap	0,125
LVDS deivers	30

Il complete version: Preliminary results

Digital development platform

Xilinx Virtex VI platform was selected as general platform for cluster counting algorithms development and demonstration. Virtex VI devices combine programmable logic and a PowerPC into a single platform.

Conclusions and future prospectives

- Two versions of the integrated analog front have been proposed
- Measurements on the first version have been presented
- A second version has been imlemented to get the following goals:
- -amplifier bandwidth at 500MHz
- -less power consumption
- -improoved ADC linearity
- -reduced chip area
- Measurements on the II version of the chip must be completed
- Measurements by the FPGA has to be set-up