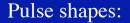
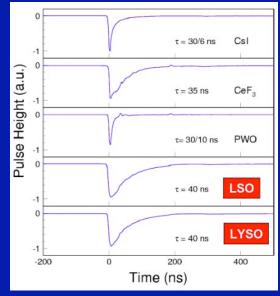
TOF with LYSO + G-APD

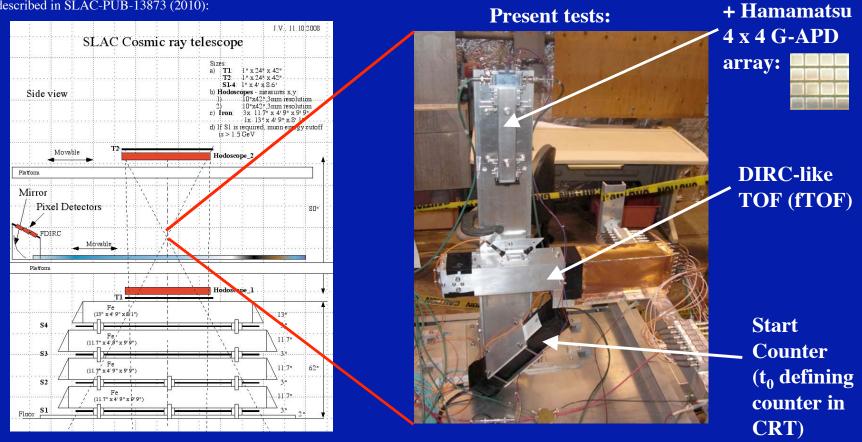

J. Va'vra, SLAC


Content

- Start counter resolution in CRT
- SLAC results with small LYSO + G-APD
- SLAC results with small scintillator + G-APD
- SLAC results with large LYSO + G-APD
- Fermilab results with a tiny LYSO + G-APD
- Pisa results with with a tiny LYSO + G-APD

Logic of using LYSO for TOF ?

ONLIFORNIA JA	Cryst	tals	for	HEP	Ca	lori	imet	ers	
	Crystal	Nal(TI)	Csl(Tl)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂
	Density (g/cm³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
	Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
	Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
	Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
	Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
	Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
	Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
	Luminescence ^ь (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?
	Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?
	Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?
	d(LY)/dT ^b (%/ °C)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
	Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) TAPS	L3 BELLE	KLOE-2 SuperB SLHC?	CMS ALICE PANDA	HHCAL?
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.									
October 29, 2009 Paper N43-1, NSS09, Ren-yuan Zhu, Caltech									



• It is not as fast as CsI or PWO, but it has much larger light yield copared the two (almost as high as NaI(Tl)). If one could "parasit" on the forward EMC calorimeter and achieve a good timing, why not ? A cheap simple way...

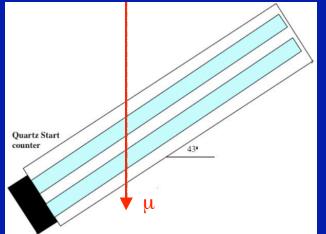
SLAC CRT setup

Cosmic Ray Telescope (CRT):

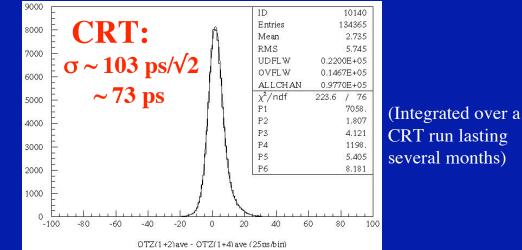
(described in SLAC-PUB-13873 (2010):

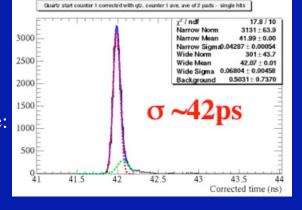
- T1*T2*S1*Qtz_counter rate ~ 5k/24 hours <=> E_{muon} > 1.6 GeV lacksquare
- Can accumulated more than 150k triggers/month. •

3/1/2011


J. Va'vra, Forward TOF with LYSO

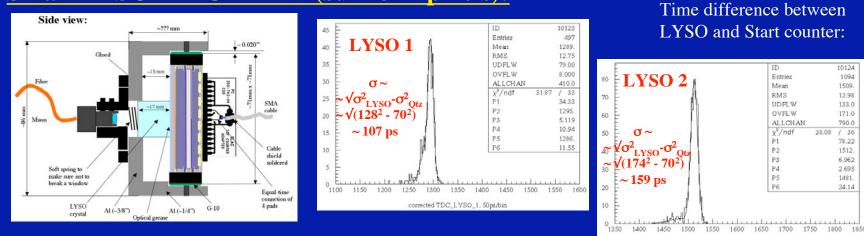
LYSO


Double-quartz counter performance in CRT


4-pad MCP-PMT & 2 quartz bars:

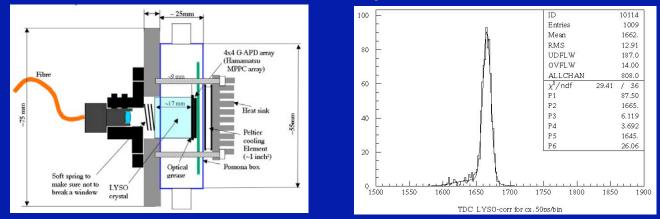
Form a difference between two pairs of pads: $\Delta T = (Pad_1 + Pad_2)/2 - (Pad_3 + Pad_4)/2$

The same counter in the ESA test beam lasting a few hours and measured relative to an accelerator start pulse:

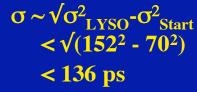


• The start counter gives a resolution consistently of about 70-75 ps in a long CRT run, averaged over all CRT track angles, temperature drifts, etc.

3/1/2011


SLAC tests with small LYSO

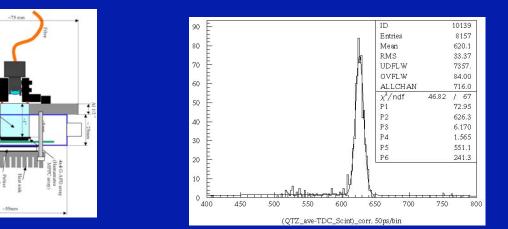
Small LYSO + MCP-PMT (sum of 4 pixels):



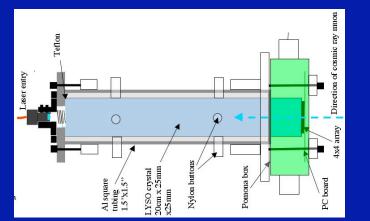
corrected TDC LYSO 2.50ps/bin

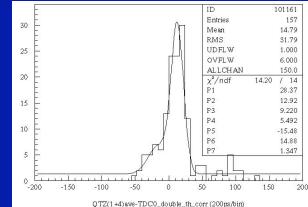
Small LYSO + G-APD (4x4 array):

Time difference between LYSO and Start counter:



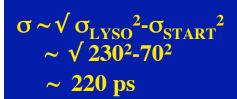
Corrections & cuts: k_z & ADC corrections, cuts on Spot & ADC & Energy


3/1/2011


SLAC tests with small LYSO

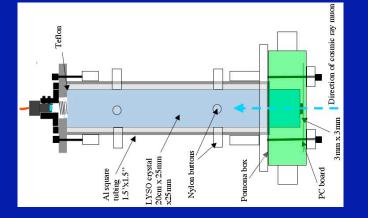
<u>Scintillator + MCP-PMT (4x4 array):</u>

Full size LYSO + G-APD (4x4 array):



Time difference between scintillator and Start counter:

Time difference between LYSO and Start counter:

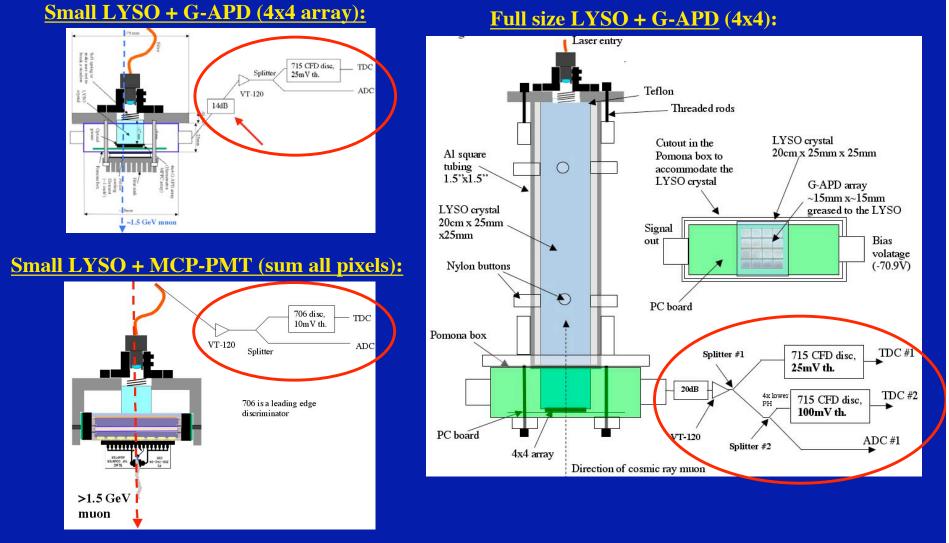


Corrections & cuts: k_z & ADC corrections, cuts on Spot & ADC & Energy

3/1/2011

SLAC tests with full size LYSO

Full size LYSO + G-APD (single 3x3mm² MPPC S10362-33-025C):

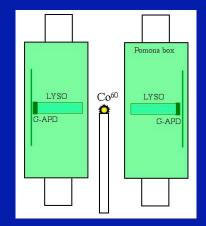


Plan to run it in CRT in April **σ~?**

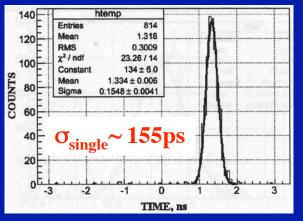
To be done befor CRT shutdown for FDIRC tests

3/1/2011

SLAC tests: differences in electronics



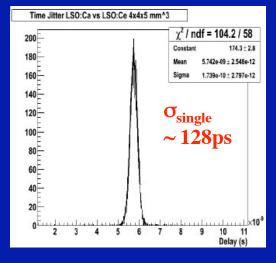
• The first LYSO tests had more simple electronics.


Fermilab test: tiny LYSO + G-APD array

A. Ronzhin, S. Los, et al., Fermilab internal pub, 2011

Setup:

Time difference between two identical LYSO counters:


- Their aim: to develop a fast PET detector using LYSO.
- Co⁶⁰ source and trigger on back-to-back γ's.
- 3mm x 3mm Hamamatsu G-APDs.
- Very tiny LYSO crystal of 3mm x 3mm x 7mm.
- The DRS4 waveform digitizer to analyze data (5 GHz sampling).
- With a PiLas laser diode they obtained a resolution of $\sigma \sim 39$ ps for a signal of ~ 25 pe's.
- With a Co⁶⁰ source they obtained $\sigma \sim 155$ ps (their best resolution).

4D-MPET: tiny LYSO + G-APD

M.S. Bisogni, Department of Physics, Pisa, 2010

Summary of results from a Na ²² source:							
LSO Ca %	Size (mm ³)	FWHM (ps)	$\sigma \sqrt{2}$ (ps)				
0	$2 \times 2 \times 10$	345	104				
0.3	$3 \times 3 \times 10$	357	107				
0	$4 \times 4 \times 5$	475	143				
0.3	$4 \times 4 \times 5$	427	128				

Time difference between two identical LYSO counters:

- For a development of a fast PET detector using LYSO.
- 3mm x 3mm FBK G-APDs (the same G-APDs as Padova is using presently).
- Noise rate: 1-3MHz for threshold of 1-2 pe's, and 3-4kHz for threshold of 3-4 pe's.
- The best resolution was obtained with a very tiny LYSO crystal of 3mm x 3mm x 10mm. He compared this result with other small crystal sizes.
- With a Na²² source, the best resolution obtained was $\sigma \sim 107$ ps.

Conclusion

• **Results so far:**

Test	Radiator	Detector	Particle	Resolution	
SLAC	Small LYSO 17mm x 17mm x 17mm	MCP-PMT	CRT µ's	109 & 159 ps	
SLAC	Small LYSO 17mm x 17mm x 17mm	G-APD array	CRT µ's	~ 140 ps	
SLAC	Small scint. 17mm x 17mm x 17mm	G-APD array	CRT µ's	~ 136 ps	
SLAC	Long LYSO 25mm x 25mm x 200mm	G-APD array	CRT µ's	~ 220 ps	
Fermilab	Tiny LYSO 3mm x 3mm x 7mm	3mm ² G-APD	γ's from Co ⁶⁰	~ 155 ps	
Pisa	Tiny LYSO 3mm x 3mm x 10mm	3mm ² G-APD	2γ's from Na ²²	~ 107 ps	

• Still one more test is planned in CRT, but things do not look hopeful to me that we can achieve $\sigma \sim 100$ ps. But would like to go at it once more.