A. Drutskoy, ITEP, Moscow

Prospects for Υ (5S) and B_s^0 studies at Super *B*-factories

Super B Workshop

April 4-7, 2011, Frascati, Italy.

SuperB Workshop, Prospects for Y(5S) and B⁰_s studies at Super B-factories, April 4-7, 2011, Frascati, Italy A. Drutskoy

2

Belle II luminosity upgrade projection

As is now well known, Japan suffered a terrible earthquake and tsunami on March 11, which has caused tremendous damage, especially in the Tohoku area. Fortunately, all KEK personnel and users are safe and accounted for. The injection linac did suffer significant but manageable damage, and repairs are underway. The damage to the KEKB main rings appears to be less serious, though non-negligible. No serious damage has been reported so far at Belle. Further investigation is necessary. We would like to convey our deep appreciation to everyone for your generous expressions of concern and encouragement.

Hadronic event classification at $\Upsilon(5S)$

B ^o _s and B ^{o/}	$^{\scriptscriptstyle +}$ production rates at $\Upsilon(5S)$ (at ${\sf E}_{\sf cm}{=}10867$ MeV)
B ⁰ (19	$f(B_{s}^{*}\overline{B_{s}}^{*}) = (90.1 \pm \frac{3.8}{4.0} \pm 0.2)\%$
	$f(B_s * \overline{B_s}) = (7.3 \pm 3.3_{3.0} \pm 0.1)\%$
	$f(B_s\overline{B_s}) = (2.6 \pm \frac{2.6}{2.5})\%$
B (73	$B^{0} (77.0 \pm \frac{5.8}{5.6} \pm 6.1) \%$
	$B^+ (72.1 \pm \frac{3.9}{3.8} \pm 5.0) \%$
	BB: $(5.5 \pm \frac{1.0}{0.9} \pm 0.4)\%$
2 - body	$B^*\overline{B}$: (13.7 ± 1.3 ± 1.1) %
	B* $\overline{B^*}$: (37.5 ± $\frac{2.1}{1.9}$ ± 3.0)%
	$B\bar{B}\pi$ (0.0 ± 1.2 ± 0.3) %
<mark>3 - body</mark>	$B^*\overline{B} \pi$ (7.3 ± $\frac{2.3}{2.1}$ ± 0.8)%
	$B^*\overline{B}^*\pi$ (1.0 ± $\frac{1.4}{1.3}$ ± 0.4)%
Residual (ISR)	$(9.2 \pm \frac{3.0}{2.8} \pm 1.0)$ %

7

 $B_s \rightarrow \phi \gamma$

 $B_s \rightarrow \gamma \gamma$

B_s^0 decay measurements performed on Belle (\mathcal{L} =23.6 fb⁻¹)

		0 .	
B _s ⁰ decay mode	Branching fraction, ×10 ³	Rel. B ⁰ mode	Br. fraction , ×10 ³
$B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$	$3.67 \begin{array}{r} +0.35 \\ -0.33 \end{array} \begin{array}{r} +0.43 \\ -0.42 \end{array} \pm 0.49 (f_s)$	B ⁰ -> D ⁻ π ⁺	2.68 ± 0.13
> B _s ⁰ -> D _s * ⁻ π ⁺	2.4 $^{+0.5}_{-0.4} \pm 0.3 \pm 0.4$ (f _s)	B ⁰ -> D* ⁻ π ⁺	2.76 ± 0.13
> $B_s^0 - D_s^- \rho^+$	8.5 $\frac{+1.3}{-1.2} \pm 1.1 \pm 1.3$ (f _s)	B ⁰ -> D ⁻ ρ ⁺	7.6 ± 1.3
> $B_s^0 - D_s^{*-} \rho^+$	11.9 +2.2 ± 1.7 ± 1.8 (f _s)	B ⁰ -> D* ⁻ ρ ⁺	6.8 ± 0.9
$B_{s}^{0} \rightarrow D_{s}^{-/+} K^{+/-}$	$0.24 \begin{array}{r} +0.12 \\ -0.10 \end{array} \pm 0.03 \pm 0.03 \ (f_s)$	B ⁰ -> D ^{-/+} K ^{+/-}	0.20 ± 0.06
> B _s ⁰ -> φ γ	(5.7 +1.8 +1.2) x 10 -2	B ⁰ -> K*(892) ⁰ γ	(4.01 \pm 0.20) x 10 $^{\text{-2}}$
B _s ⁰ -> K ⁺ K ⁻	$(3.8 {}^{+1.0}_{-0.9} \pm 0.5 \pm 0.5 ({ m f_s})) { m x} 10^{ -2}$	B ⁰ -> K ⁺ π ⁻	(1.94 \pm 0.06) x 10 $^{\text{-2}}$
$B_{s}^{0} \rightarrow D_{s}^{+} D_{s}^{-}$	(1.03 +0.39 +0.26 -0.32 -0.25) x 10	B ⁰ -> D _s ⁺ D ⁻	(0.72 ± 0.08) x 10
> B _s ⁰ -> D _s ^{*+} D _s ⁻	(2.75 +0.83 ± 0.69) x 10	B ⁰ -> D _s * ⁺ D ⁻	(0.80 \pm 0.11) x 10
> B _s ⁰ -> D _s ^{*+} D _s ^{*-}	(3.08 ^{+1.22} ^{+0.85} -1.04 ^{-0.86}) x 10	B ⁰ -> D _s * ⁺ D* ⁻	(1.77 \pm 0.14) x 10
> B _s ⁰ -> J/ψ η	$(3.32 \pm 0.87 \begin{array}{r} +0.32 \ -0.28 \end{array} \pm 0.42(f_s))/10$	B ⁰ -> J/ψ K ⁰	(8.71 \pm 0.32) / 10 [/3]
> B _s ⁰ -> J/ψ η'	$(3.1 \pm 1.2 \ {}^{+0.5}_{-0.6} \pm 0.38({ m f_s}))$ / 10	B ⁰ -> J/ψ K ⁰	(8.71 \pm 0.32) / 10 [/3]
$> B_s^0 -> X^- \ell^+ v$	(10.2 \pm 0.8 \pm 0.9) x 10	$B^{0} \rightarrow X^{-} \ell^{+} \nu$	(10.33 \pm 0.28) x 10

> - first measurements, > - unpublished first measurements

Reasonable agreement between branching fractions for related B_s^0 μ B⁰ decays

Potential measurements with 1 ab^{-1} at $\Upsilon(5S)$

Where can SuperB factories be competitive with LHCb by 2016?

What are advantages of B factories comparing with hadron colliders?

- 11
- Advantages of Super B factories running at Y(5S), comparing with hadron-hadron colliders (in particular with LHCb):
 - 1) Low background, clean B_s samples (first LHCb results are rather clean).
 - 2) A few percent systematics in determination of full B_s number in dataset.
 - 3) Measurements of decay modes with many γ , π^0 and η in final state.
 - 4) No problems with trigger for no-vertex and multi-particle final states.
 - 5) Inclusive measurements (inclusive photon spectrum, semileptonic BF).
 - 6) Partial reconstruction ("missing-mass" method).
 - 7) Full reconstruction B_s sample can be used to study opposite side B_s .

Disadvantages:

- 1) We have to choose between running at $\Upsilon(4S)$ and $\Upsilon(5S)$.
- 2) Number of B_s mesons is smaller than in LHCb.
- 3) In LHCb lepton trigger efficiency is also high (close to 100 %).
- 3) Vertex resolution is not good enough to measure B_s mixing (?).

If we could measure time-dependent CP, physics program will be much wider.

Feasibility of B_s mixing measurement with two same-sign leptons $_{12}$

 B_s mixing can be measured with Single Vertex Resol ~12 μ m and boost ~0.425

If B_s mixing oscillations cannot be resolved, lifetime difference between CP= + and CP= - B_s decays can be used to search for BSM effects.

Direct $\Delta\Gamma_{c}$ measurement using CP-fixed B_c modes with $1ab^{-1}$

 $\Delta\Gamma_{s}/\Gamma_{s}$ measurement from *Bf* (B_s -> D_s^{+(*)} D_s^{-(*)})

We can test SM comparing directly measured $\Delta\Gamma_s$ with $\Delta\Gamma_s^{CP}$.

$$\Delta \Gamma_{s} = \Delta \Gamma_{s}^{CP} \cos \phi_{s} \qquad \phi_{s} \text{ is small in SM (phase in V}_{ts} \text{ is small})$$

BSM effects can decrease lifetime difference $\Delta \Gamma_{s}$.

$$\Delta \Gamma_{s}^{CP} = \Sigma \Gamma(CP=+) - \Sigma \Gamma(CP=-)$$

 $B_s - D_s^{(*)+} D_s^{(*)-}$ decays are CP-even final states with largest BF's of ~(1-3)% each, saturating $\Delta \Gamma_s^{CP}$.

$$\frac{\Delta \Gamma_{s}^{CP}}{\Gamma_{s}} \approx \frac{Bf (B_{s}^{-}>D_{s}^{(*)+}D_{s}^{(*)-})}{1 - Bf (B_{s}^{-}>D_{s}^{(*)+}D_{s}^{(*)-}) / 2}$$

This formula is based on assumptions : 1) Contribution of $B_s \rightarrow D_s^{+(*)} D_s^{-(*)} n \pi$ is small 2) Decays $B_s \rightarrow D_s^+ D_s^{-*}$ and $B_s \rightarrow D_s^{+*} D_s^{-*}$ are dominantly CP-even states.

Corrections are expected to be small (~5-7%), $\Delta\Gamma_s^{CP}$ can be well measured.

Many two-body (b->u and penguin) decays can be measured with 1 ab⁻¹. Decays with η and η' mesons are specially interesting. It is possible in some modes to measure time-integrated asymmetry and/or polarization. Best candidates with large branching fractions are:

 $\begin{array}{l} B_{s} \rightarrow K^{-}\pi^{+}, \\ B_{s} \rightarrow K^{0} \ K^{0}, \\ B_{s} \rightarrow K^{-}\rho^{+}, \\ B_{s} \rightarrow \eta^{(\prime)} \ \eta^{(\prime)}, \\ B_{s} \rightarrow \phi \phi \end{array}$ Phys.Rev. D76, 074018 (2007) Ali et al.

Decay mode $B_s \rightarrow D_s^{-/+} K^{+/-}$ can be used to measure precisely angle γ with 1 ab⁻¹. Two contributing tree diagrams (Cabibbo-suppressed and b->u) are of the same order:

Time-dependent measurement : Z. Phys. C54, 653 (1992) Aleksan, Dunietz, Kayzer Time-integrated (other side CP-tagged B_s,~5 ab⁻¹): Phys.Rev.Lett 85, 252 (2000) Falk, Petrov

- 1. Inclusive $B_s \rightarrow X^- \ell^+ v$ decay branching fraction. It was measured (not published in journals) by Belle with 23.6 fb⁻¹.
- 2. Inclusive $B_s \rightarrow X_{ss} \gamma$ decay branching fraction $(B_s \rightarrow \phi \gamma)$. It requires to develop relevant semi-inclusive method.

Partial reconstruction or full reconstruction of other side B_s:

- 1. Exclusive $B_s \rightarrow D_s^{(*)} \ell + v$ decay branching fractions. Precise measurements can be done with Belle statistics of ~121 fb⁻¹.
- 2. Exclusive $B_s \rightarrow D_{sJ} \ell^* v$ decay branching fractions (~1 ab⁻¹).
- 3. Exclusive $B_s \rightarrow K^- \ell^+ v$ decay branching fraction (probably ~1 ab⁻¹).
- 4. Exclusive $B_s \rightarrow D_s \tau v$ decay branching fraction. It requires MC studies (probably ~1 ab⁻¹ will be enough).

Leptonic B_s decays

 $1 \text{ ab}^{-1} = 10^8 \text{ B}_{s} \text{ mesons}$

- 1. Measurement of $B_s \rightarrow \mu^+ \mu^-$ decay branching fraction. SM: $\mathcal{B} \sim (3.4\pm0.5) \times 10^{-9} =>$ too small PDG: < 4.7×10⁻⁸ @90%CL
- 2. Measurement of $B_s \rightarrow \mu^+ \mu^- \gamma$ decay branching fraction. SM: $\mathcal{B} \sim 3 \times 10^{-9} = \text{too small}$ (not helicity suppressed) BSM \uparrow up to $\times 5$
- 3. Measurement of B_s-> τ⁺τ⁻ decay branching fraction.
 SM: B (B_s-> τ⁺τ⁻) ~ 7 × 10⁻⁷, BSM can ↑ up to × 10 OK, requires MC study
 SM: B (B_s-> τ⁺τ⁻γ) = 1.5 × 10⁻⁸ (hep-ph/0504193), BSM can ↑ up to × 10
- 4. Measurement of $B_s \rightarrow \phi \mu^+ \mu^-$ decay parameters. LHCb will do it. Maybe $B_s \rightarrow \eta^{(4)} \mu^+ \mu^-$ decay is not that easy for LHCb.
- 5. Measurement of $B_s \rightarrow \phi v v$ decay branching fraction. SM: $\mathcal{B} \sim 10^{-5}$, Full reconstruction B_s , BSM sensitive, OK, requires MC study

Lepton charge asymmetry measurement

 $1 \text{ ab}^{-1} = 10^8 \text{ B}_{s} \text{ mesons}$

 $A_{sl}^{s} = (Bf(\overline{B}_{s}^{-} > \ell^{+} X) - Bf(B_{s}^{-} > \ell^{-} X)) / (Bf(\overline{B}_{s}^{-} > \ell^{+} X) + Bf(B_{s}^{-} > \ell^{-} X))$ D0: $A_{sl}^{b} = (-0.957 \pm 0.251 \pm 0.146) \%$; SM: $\sim -2 \times 10^{-4}$; BSM: up to 10^{-3}

Advantage of B factories : separation of B_s and B sources for leptons Technique : selection of $\mu\mu$ and $\phi\mu\mu$ samples Electrons can be used as well

Expected accuracy at Super B factory with 1 ab^{-1} : $\sigma(A_{sl}^{s}) \sim 0.3\%$

 $A_{sl}^{s} = (\Delta \Gamma_{s} / \Delta M_{s}) \times \tan \phi_{s}$

SM: $\mathcal{B} \sim (0.5-1.0) \times 10^{-6}$ Belle (23.6 fb⁻¹): $\mathcal{B} (B_s \rightarrow \gamma \gamma) < 8.7 \times 10^{-6}$ (90% CL)

With 1 ab⁻¹ (3-5) σ measurement of SM branching fraction is expected.

With specific set of parameters BSM model branching fraction is increased up to:

2 × 10 ⁻⁶	T.M. Aliev, et al, "Leading logarithmic corrections to the B _s -> $\gamma\gamma$ decays in the two Higgs doublet model", Nucl. Phys. B515 321 (1998).
3 × 10 ⁻⁶	W.J. Huo, et al, "B_s-> $\gamma\gamma$ decays with the fourth generation",hep-ph/0302177
5 × 10 ⁻⁶	A. Gemintern, et al, "B _s ->X(s) $\gamma\gamma$ and B _s -> $\gamma\gamma$ in supersymmetry with broken R-parity", Phys. Rev. D70 035008 (2004).
0.04 × 10 ⁻⁰	5 J.I. Aranda, et al, "Bounding the B _s ->γγ decay from Higgs mediated FCNC transitions", arXiv:1005.5452 (hep-ph).

New (almost unexpected) field in $\Upsilon(5S)$ physics:

Searches for new bottomonium states

In contrast to $\Upsilon(4S)$ data, $\Upsilon(5S)$ can decay in bottomonium states with high rates up to 1% level (next two slides)

Why $\Upsilon(5S)$ does not decay only to B and B_s mesons ? Exotic mechanisms ?

We don't know answers to these questions.

It is important to develop physics program in this field

Production of $h_b(1P)$ and $h_b(2P)$ at $\Upsilon(5S)$ (R.Mizuk talk, Moriond 2011)

23

PDG (Z->bb, pp at
$$S^{1/2}=1.8TeV$$
)
b hadron fraction(%)
B⁺, B⁰ 39.8 ± 1.0
B_s 10.4 ± 1.4
b baryons 9.9 ± 1.7 (90% Λ_{b}

Rates at e+e- continuum should be similar, baryon production is large.

$$M(\Lambda_b) = (5624 \pm 9) \text{ MeV/c}^2$$

 $M(\Lambda_b)x^2 = (11248 \pm 18) MeV/c^2 => 6.3\%$ up from Y(4S) CME.

Can Super B factory CM energy range be increased ? $M(B_c) = (6286 \pm 5) \text{ MeV/c}^2$

e+e- → Υ (65,75) → $B_s\overline{B}_s$, $\Lambda_b\overline{\Lambda}_b$, $B_c\overline{B}_c$, $\Xi_b\overline{\Xi}_b$... ?

24

Extensive physics program can be proposed at Super B factories with statistics of 1 ab⁻¹ at Y(5S). Important SM tests can be done.

 Because we don't know which BSM model is correct, we should develop comprehensive program with all possible BSM searches.

 It is important to have good vertex resolution and option with large e+e- CM boost to measure time dependent CP violation.

Belle Upgrade for the Super B Factory

Beampipe radius is important Competitive performance as the current SVD Occupancy effects. Degradation of intrinsic resolution is included. Efficiency loss is NOT included

Observation of $\Upsilon(5S) \rightarrow \Upsilon(1S)\pi + \pi -$, $\Upsilon(2S)\pi + \pi -$

- K.-F. Chen et al. (Belle coll), PRL 100, 112001 (2008)
 - L= 21.7 fb⁻¹
- -> look for: $\mu^+\mu^-h^+h^-$

e⁺e⁻ -> Y(1S) π⁺π⁻X e⁺e⁻ -> Y(2S) π⁺π⁻X

Signals are about 1%. Is it similar to recently observed $Y(4230) \rightarrow J/\Psi \pi \pi$ state (hybrid interpret.)?

