

B→K*vv vs HAD tag: energy smearing in FastSim

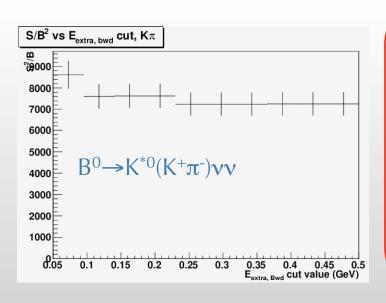
Elisa Manoni INFN Sez. Perugia

EMC session - SuperB workshop, LNF, April 04, 2011

elisa manoni infn perugia | 1 |

Outline

- Caltech results and analysis strategy
- Neutral energy smearing algorithm
- Patch validation
- Results on Bwd EMC veto impact


infn perugia

Caltech results

Eextra_bwd0.05 GeV:

		$B^0 \rightarrow$	$\rightarrow K^{*0}\nu\bar{\nu}$			
Sample	$N_{ m sel}$	$arepsilon_{ m tot}$	$N_{ m sel,Bwd}$	$\varepsilon_{ m tot, Bwd}$	$\delta \varepsilon / \varepsilon$	
$B^0 \to K^{*0} \nu \bar{\nu}$	727	$(24.5 \pm 0.9) \times 10^{-5}$	719	$(24.2 \pm 0.9) \times 10^{-5}$	$(-1.1 \pm 0.4)\%$	
B ⁰ had cocktail	76	$(20 \pm 2) \times 10^{-8}$	60	$(16 \pm 2) \times 10^{-8}$	$(-21 \pm 7)\%$	
S/\sqrt{B}		83 ± 7		93 ± 9		
		the I are to a	$T^{*+}(K_z\pi^+) uar u$			
		$B^+ o K^*$	$^{+}(K_{z}\pi^{+})\nu$	עֿי		
Sample	$N_{ m sel}$				$\delta \varepsilon / \varepsilon$	
Sample $B^+ \to K^{*+} \nu \bar{\nu}$	$N_{ m sel}$ 223		$\frac{+(K_z\pi^+)\nu}{N_{\mathrm{sel,Bwd}}}$		$\frac{\delta \varepsilon / \varepsilon}{(-0.5 \pm 0.4)\%}$	
		$arepsilon_{ m tot}$	$N_{ m sel,Bwd}$	$arepsilon_{ m tot, Bwd}$		

$$\delta\left(\frac{S}{\sqrt(B)}\right) = \frac{\left(\frac{S}{\sqrt(B)}\right)_{bwd} - \left(\frac{S}{\sqrt(B)}\right)_{nobwd}}{\left(\frac{S}{\sqrt(B)}\right)_{nobwd}} =$$

$$K\pi : (10 \pm 3)\%$$

 $K_s\pi : (8 \pm 3)\%$

Motivations and analysis strategy

- September production ntuple: neutral energy smearing not applied
- @ Caltech: analysis of September sample to evaluate the impact of Bwd
 EMC used as veto device
- → without smearing, results can be too optimistic
- Need to re-compute impact of Bwd EMC veto including resolution effects:
 - make a new production for the BBbar sample is too time consuming
- → apply smearing off-line
 - validate smearing algorithm on signal and single particle MCs
 - apply off line smearing on both BBbar and signal samples from September production
 - repeat the analysis and compare S/sqrt(B+B) w and w/o Eextra_bwd veto

infn perugia

FastSim energy smearing algorithm (I)

BaBar EMC energy resolution:

$$\sigma(E)/E = 2.35\%/E^{(1/4)} + 1.35\%$$

Energy resolution parameterization in FastSim:

gaussian component: $\sigma(E)/E = fa/E \land (ep) + fb$

+ exponential tail: $\tau = \frac{\text{cexp}}{\text{E}} \cdot (\text{pexp}) + \text{dexp}$

parameter values :

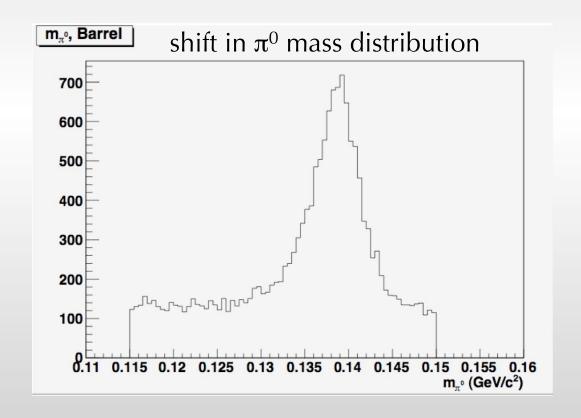
par	fwd	brr	bwd
fa	0.0102	0.0102	0.14
fb	0.0	0.0	0.03
ep	0.264	0.264	0.5
cexp	0.0165	0.0165	0.0
dexp	0.0284	0.0284	0.0
pexp	0.05	0.050	0.0

FastSim energy smearing algorithm (II)

- Experimental effects accounted in FastSim:
 - global EMC calibration: apply scaling factor to recover part of the cluster not contained
 - background cluster effects: once the "physics" cluster has been reconstructed, switch on random crystals around the cluster
 - energy smearing due to finite resolution

smearing parameter:

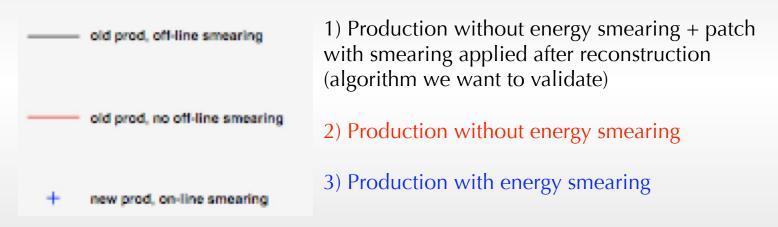
 $\delta E = \text{gaussRnd} (0, \sigma(E)) - \exp \text{Rnd}(\tau(E))$


gaussRnd/expRnd = random numbers generated according to gaussian/exponential distribution (function of resolution params)

→ smeared energy: $E_{\text{meas}} = E_0 * (1+δE)$

FastSim energy smearing algorithm (III)

- September production:
 - global EMC calibration ON
 - background cluster effects ON
 - energy smearing due to finite resolution OFF



Patch validation

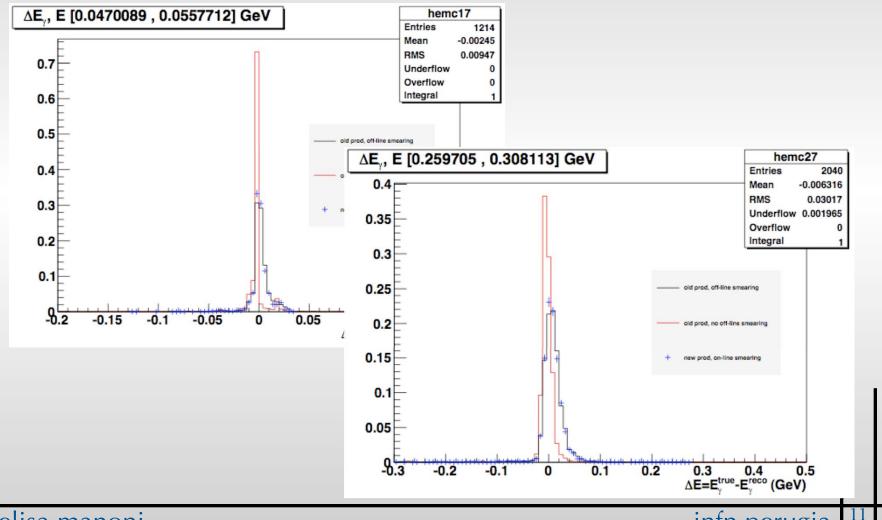
Strategy

- Compare "production with smearing turned on" and "production with smearing turned off + off-line smearing"
- samples: B^0 → K^{*0} νν signal, single- π^0 beam, single- γ beam MCs
- Legenda in the following plots:

1) is obtained starting from 2) and applying the smearing algorithm,
 it aims to reproduce 3)

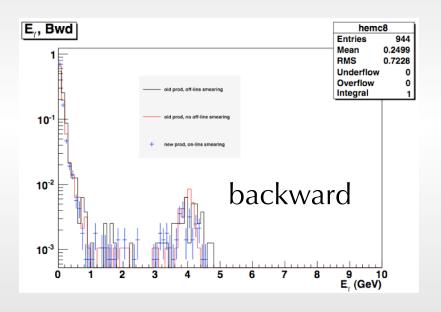
→ black histo and blue + should match

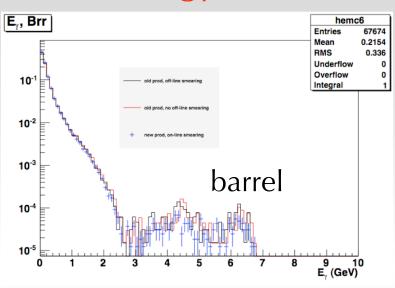
B⁰→K*⁰vv signal MC: sample and selection

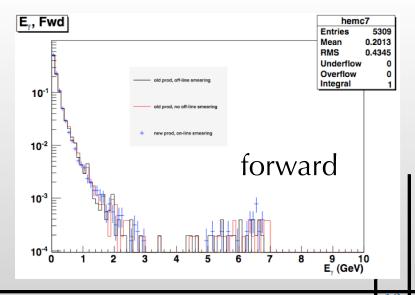

- sample:
 - ~3M events from September production (V0.2.5 FastSim release, smearing OFF)
 - ~10M events with V0.2.6 FastSim release (smearing ON)
- generate B⁰→K*⁰vv vs B⁰bar→ hadronic modes reconstruct with PacHadRecoilUser package (FastSim package for hadronic Breco analysis)
- selection
 - examine all reconstructed γ (irrespective of their origin, i.e. γ from any decay product of both Breco and Bsig)
 - thruth matching: reco photons associated to one photon in the MC list

infn perugia

$B^0 \rightarrow K^{*0}vv$ signal MC : γ energy (I)

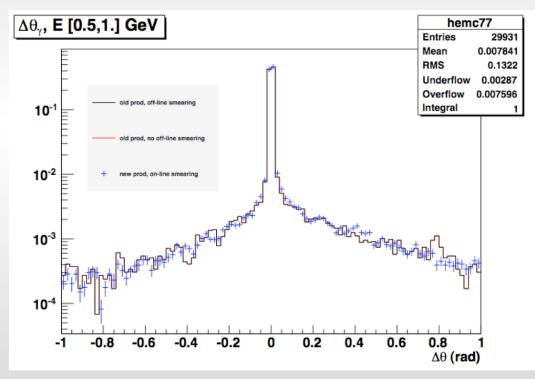

E_{true} – E_{reco} in bins of E_{true}, truth-matching required





$B^0 \rightarrow K^{*0}vv$ signal MC : γ energy (II)

E_{reco} in different EMC regions

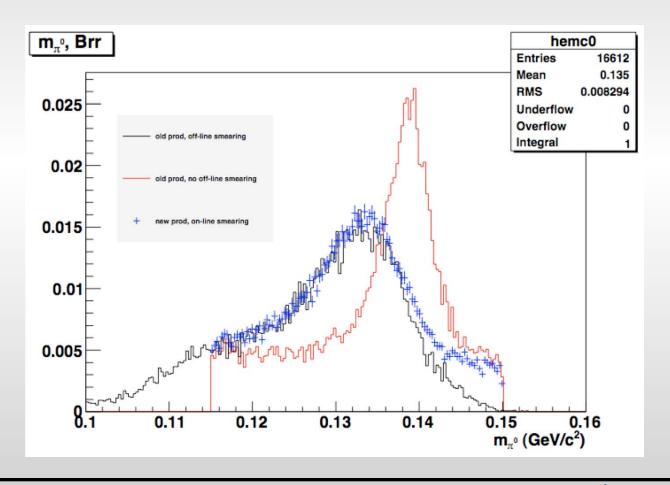

$B^0 \rightarrow K^{*0}vv$ signal MC : γ angle

 $-\theta_{true} - \theta_{reco}$ in bins of E_{true} , truth-matching required

NO ANGULAR SMEARING APPLIED: red and black matches

(same sample)

large tails due to recogamma not correctly matched (probably associated to bremmstrahlung – γ produced after γ→e+e-conversion), improvements in single

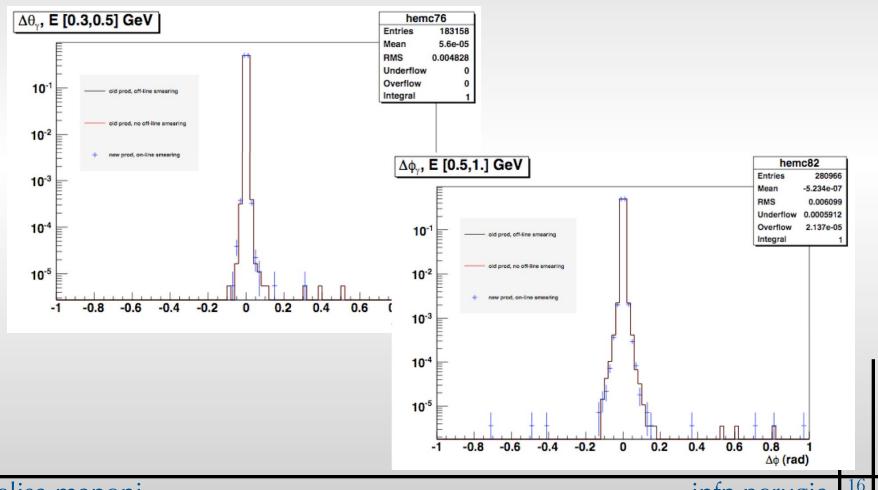


particle tests with more stringent matching requirements (slide 16)

$B^0 \rightarrow K^{*0}vv$ signal MC : π^0 mass

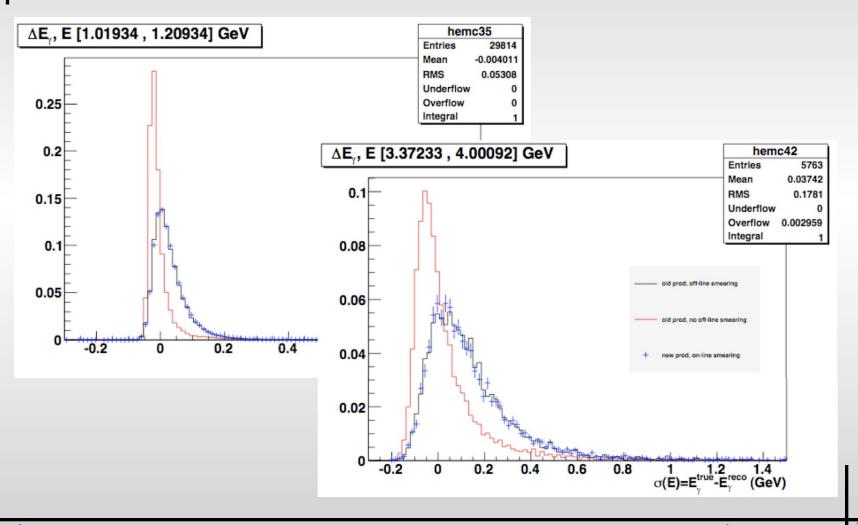
– list-level cuts and fit constraints not reproduced applying smearing after reconstruction, see slide 18 for single π^0 beam results

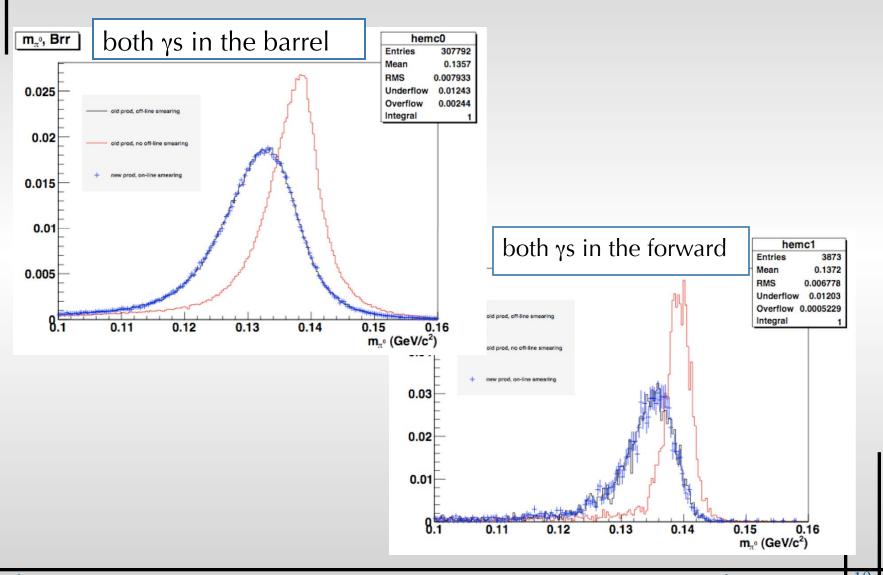
Single π^0 : sample and selection


- sample:
 - 500K events with V0.2.6 FastSim release and smearing OFF
 - 500K events with NOMINAL V0.2.6 FastSim release (smearing ON)
- $-\pi^0$ list
 - γs from CalorNeutral list,
 - γγ invariant mass cut: [0.090,0.165] GeV
 - Pmin set 0.05 GeV, Pmax set 4.0 GeV
 - CosThetamin set -1, CosThetamax set 1
- selection
 - 1 reco π^0
 - thruth matching: π⁰ reco daughters associated to 2nd and 3rd particle in the MC list (to cut reco γ matched with bremmstrahlung γ produced after γ→e⁺e⁻ conversion)

infn perugia

Single π^0 : γ angle


 $-\theta_{true} - \theta_{reco}$ and $\phi_{true} - \phi_{reco}$ in bins of E_{true} , truth-matching required


Single π^0 : γ energy

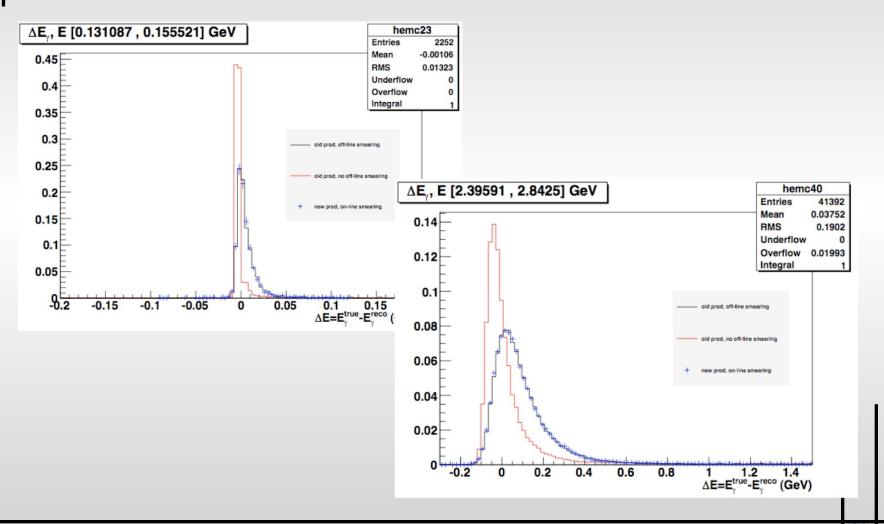
E_{true} – E_{reco} in bins of E_{true}, truth-matching required

Single π^0 : π^0 mass

Single γ : sample and selection

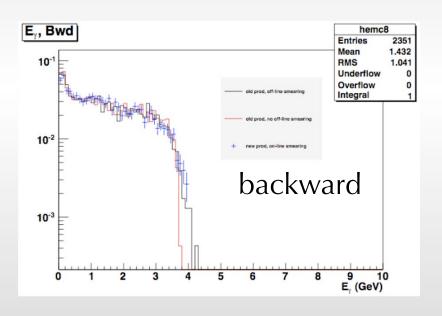
- sample:
 - 500K events with V0.2.6 FastSim release and smearing OFF
 - 500K events with NOMINAL V0.2.6 FastSim release (smearing ON)
- $-\gamma$ list
 - CalorNeutral list
 - Pmin set 0.05 GeV , Pmax set 4.0 GeV
 - FULL ANGULAR COVERAGE: CosThetamin set -1, CosThetamax set 1
 - BWD REGIONS: CosThetamin set -1, CosThetamax set -0.9

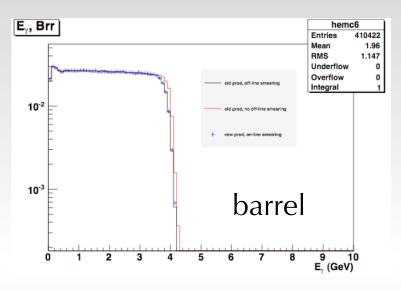
CosThetamin set -0.9615, CosThetamax set -0.8815

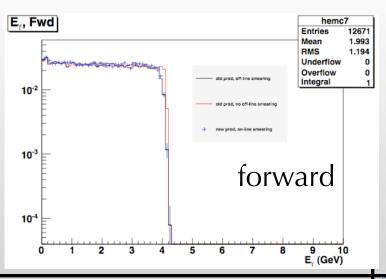

- selection
 - 1 reco photon
 - thruth matching: reco photon associated to 1st particle in the MC list (to cut reco γ matched with bremmstrahlung γ produced after $\gamma \rightarrow e^+e^-$ conversion)

infn perugia

Single γ – full angular coverage : γ energy (I)

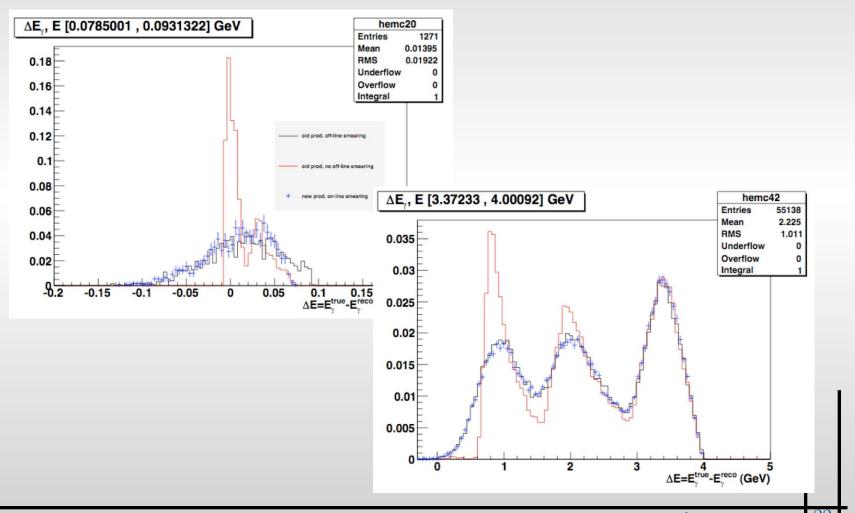

E_{true} – E_{reco} in bins of E_{true}, truth-matching required





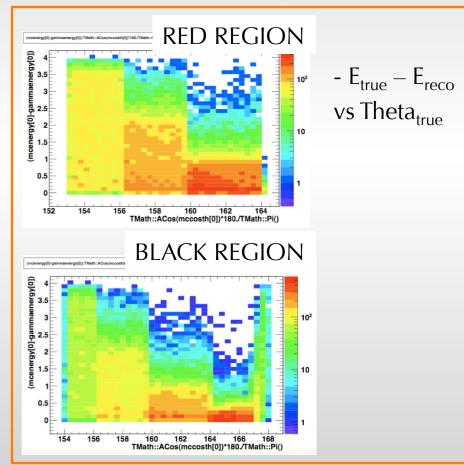
Single γ – full angular coverage : γ energy (II)

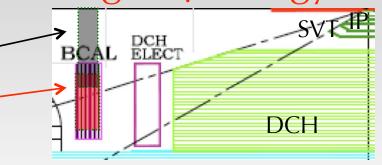
E_{reco} in different EMC regions

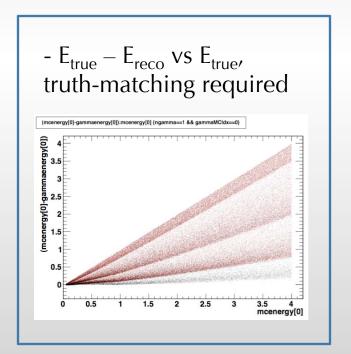


infn perugia

Single γ – BWD angular coverage : γ energy (I)


E_{true} – E_{reco} in bins of E_{true}, truth-matching required



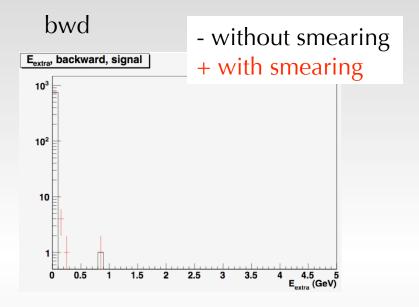


🕯 Single γ – BWD angular coverage : γ energy

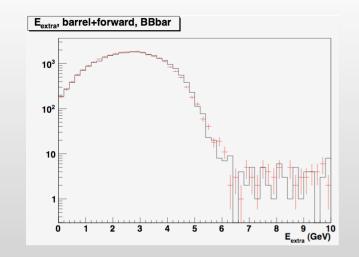
- Angular coverages:
 - CosTheta [-1,-0.9] (BLACK)
 - CosTheta [-0.9615,-0.8815] (RED)

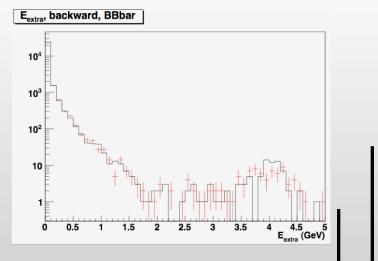
Physics results

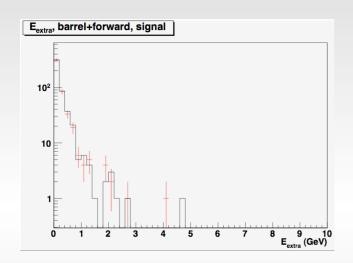
infn perugia [24]


Eextra distributions, before Bsig selection

- B⁺→K*+(K_sπ)νν


barrel+fwd

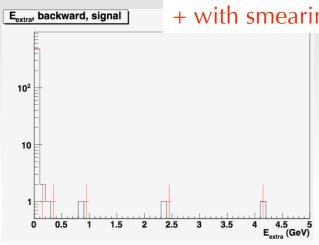

signal

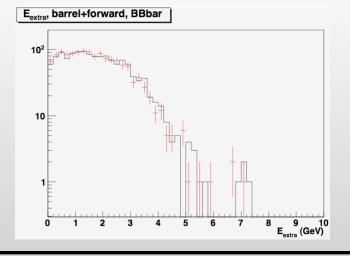


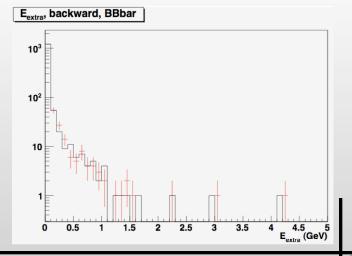
Eextra distributions, before Bsig selection

 $B^+ \rightarrow K^{*+}(K\pi^0)\nu\nu$

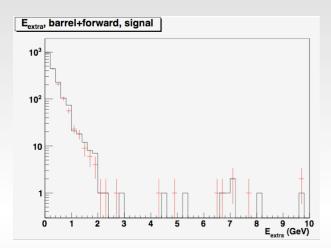
barrel+fwd


signal


bwd


- without smearing

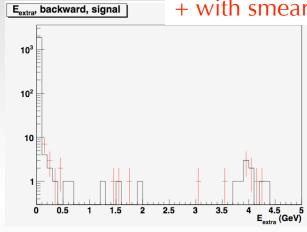
+ with smearing

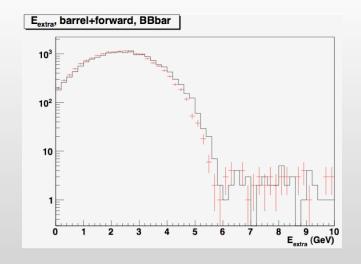


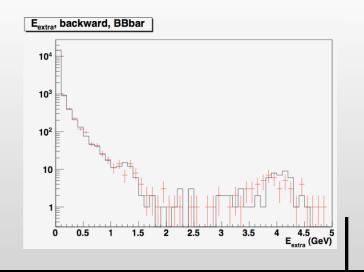
Eextra distributions, before Bsig selection

 $B^0 \rightarrow K^{*0}(K\pi)\nu\nu$

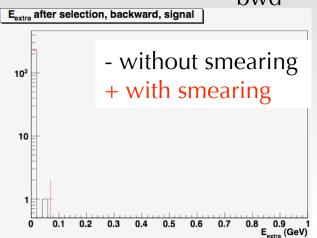
barrel+fwd

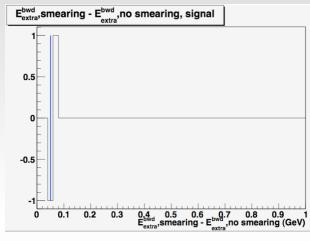

signal



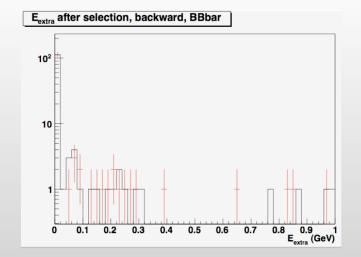

- without smearing

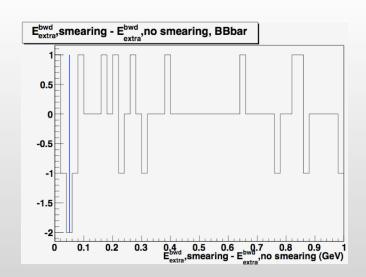
BB cocktail


Eextra BWD distributions, after Bsig selection

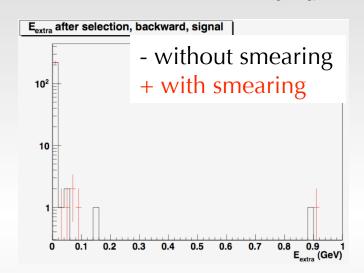

− B⁺→ $K^{*+}(K_s\pi)\nu\nu$

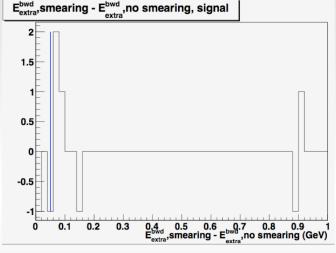
bwd


Eextra bwd w smearing - Eextra bwd w/o smearing

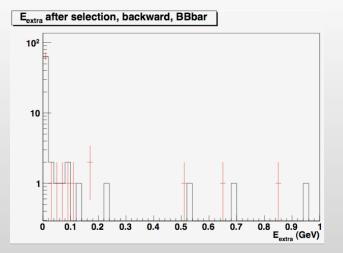

signal

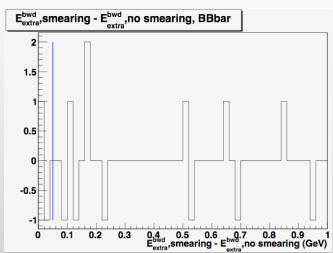
BB cocktail

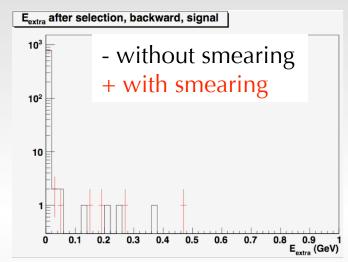

Eextra BWD distributions, after Bsig selection

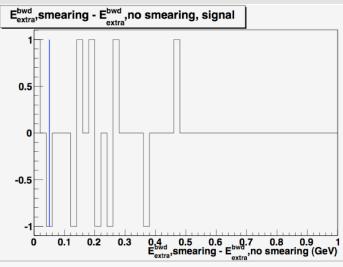

 $B^+ \rightarrow K^{*+}(K\pi^0)\nu\nu$

bwd

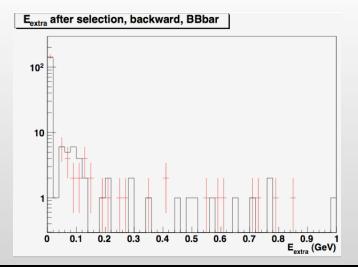

Eextra bwd w smearing - Eextra bwd w/o smearing

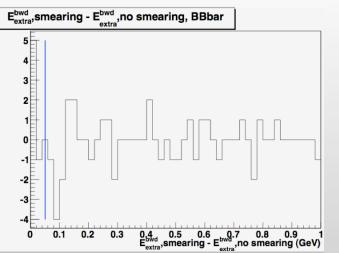

signal


Eextra BWD distributions, after Bsig selection


- B⁰→K*⁰(Kπ)νν

bwd


Eextra bwd w smearing - Eextra bwd w/o smearing


signal

Result (I)

- Eextra_bwd < 50 GeV, $E_{min,\gamma}$ = 30 MeV Changes wrt to Preliminary results shown in

http://agenda.infn.it/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=3464

- fixed bug in Bwd-Barrel angular coverage
- fixed bug in extra-photon finding algorithm (some of the Breco modes where not incorporated in the study)
- remove cut on Eextra_barrel+fwd (uncorrelated to Eextra_bwd) to increase the statistics
- Figure of Merit
 - Significance = S/sqrt(S+B)
 - ΔSignificance/Significance = (Sig_bwd-Sig_nobwd)/Sig_nobwd
 - in the limit S<<B:

 Δ Significance/Significance = $(\epsilon_sig/sqrt(\epsilon_bb))$ - 1

being ε _sig (ε _bb) the marginal efficiency of the Eextra_bwd cut in signal

(BBbar) MC sample

Result (II)

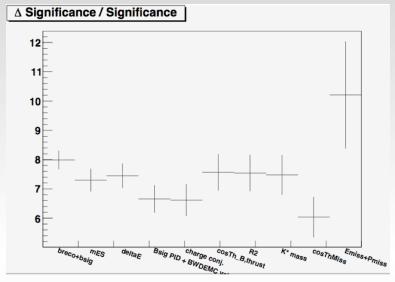
SMEARING OFF				
$B^0 o K^{*0} uar u$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^0 o K^{*0} uar u$	786	778	$(99.98 \pm 0.36)\%$	
B^0 had cocktail	181	143	$(79.0 \pm 3.0)\%$	
$\Delta Sign/Sign$		$\pm 1.9)\%$		
$B^+ \to K^{*+}(K_S \pi^+) \nu \bar{\nu}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ o K^{*+} u ar{ u}$	233	232	$(99.57 \pm 0.43)\%$	
B^+ had cocktail	136	114	$(83.8 \pm 3.2)\%$	
$\Delta Sign/Sign$	$(8.7 \pm 1.9)\%$			
$B^+ o K^{*+} (K^+ \pi^0) u ar{ u}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ o K^{*+} uar u$	227	222	$(97.8 \pm 1.0)\%$	
B^+ had cocktail	75	65	$(86.7 \pm 3.9)\%$	
$\Delta Sign/Sign$		(5.0 =	£ 2.4)%	

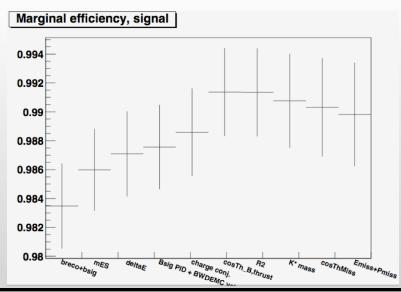
SMEARING ON				
$B^0 o K^{*0} uar u$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^0 o K^{*0} u ar{ u}$	786	778	$(99.98 \pm 0.36)\%$	
B^0 had cocktail	181	146	$(80.7 \pm 2.9)\%$	
$\Delta Sign/Sign$	$(10.2 \pm 1.8)\%$			
$B^+ o K^{*+}(K_S\pi^+) uar u$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ o K^{*+} u ar{ u}$	233	232	$(99.57 \pm 0.43)\%$	
B^+ had cocktail	136	114	$(83.8 \pm 3.2)\%$	
$\Delta Sign/Sign$	$(8.7 \pm 1.9)\%$			
$B^+ o K^{*+}(K^+\pi^0) u ar{ u}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ o K^{*+} u ar{ u}$	227	221	$(97.4 \pm 1.1)\%$	
B^+ had cocktail	75	65	$(86.7 \pm 3.9)\%$	
$\Delta Sign/Sign$		(4.6 =	£ 2.4)%	

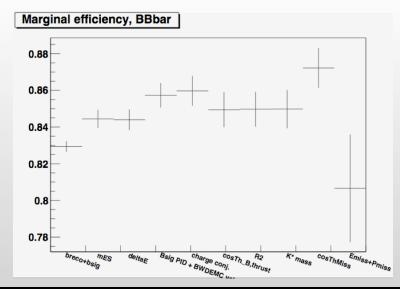
Conclusion

- Algorithm to apply off-line neutral energy smearing in place
- algorithm validated on gamma and π^0 single particle beams and signal MC
- Negligible effect of smearing on physics result:

5-10% gain in significance with Eextra, bwd veto


infn perugia




Back-up slides

Significance-flow in Kπ

Results with Eextra_brrfwd cut

SMEARING ON, E_{extra}^{brrfwd} cut				
$B^0 o K^{*0} uar u$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^0 o K^{*0} uar u$	735	727	$(98.91 \pm 0.38)\%$	
B^0 had cocktail	91	75	$(82.4 \pm 4.0)\%$	
$\Delta Sign/Sign$	$(8.9 \pm 2.4)\%$			
$B^+ o K^{*+}(K_S\pi^+) uar u$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ o K^{*+} uar u$	191	190	$(99.48 \pm 0.52)\%$	
B^+ had cocktail	76	66	$(86.8 \pm 3.9)\%$	
$\Delta Sign/Sign$	$(6.7 \pm 2.3)\%$			
$B^+ \to K^{*+}(K^+\pi^0)\nu\bar{\nu}$				
Sample	$N_{ m sel}$	$N_{ m sel,Bwd}$	ε	
$B^+ o K^{*+} u ar{ u}$	214	208	$(97.2 \pm 1.1)\%$	
B^+ had cocktail	40	33	$(82.5 \pm 6.0)\%$	
$\Delta Sign/Sign$	$(7.0 \pm 3.7)\%$			