

Introduction

- The backward endcap EMC prototype consists of 24-layers of Pb plates and scintillator strips
 → full depth is 12 X₀
- Pb plates are 2.8 mm thick ring segments
- Scintillator strips are 3 mm thick left-handed spirals, right-handed spirals radial segments that alternate eight times
- It is sufficient read out 6 strips per layer since strip sizes are larger (4.1-9.8 cm) than one Molière radius (3.8 cm)
 total of 144 readout channels
- Each scintillator strip is read out with a WLS Y11 fiber positioned in a groove in the center of the strip and coupled to an MPPC at the outer rim

Status of Prototype Preparations

 I am still waiting for the first spiral strip to be cut by our workshop in Bergen
 before June I need to ship the scintillator plates out of Norway to avoid duty plus taxes (sending them to DESY would solve the problem)

- The 24 hardened Pb plates from JL Goslar machined to the correct segment shapes are in Bergen
- Gigi Cibinetto sent me 50 m of Kuraray Y11 fiber (paid €30 in taxes)
 For remaining 30 m I have asked Felix Sefkow,
 - if they do not have the correct size left, I need to find 6 volunteers to ask for 5 m samples from Kuraray

Missing components:

- Diffuse reflector sheets and paint
- Temperature sensors
- Get 3 more SPIROC boards from LAL
- Get calibration board and clear fibers from Prague

Review of the Backward Endcap EMC

- At the SuperB workshop at Caltech in December 2010 the backward endcap EMC was reviewed by the backward task force (Bill)
- I have not seen a report yet, but I heard from Bill that the design is generally fine
- Main issue is manpower
 find collaborators
- Before the approval of SuperB the manpower issue was a difficult task

Norwegian Research Council Review

- 10 days ago we had our annual 2-day review with the Norwegian Research Council and committee (John Ellis, Vera Luth, Barbara Jacak)
- The main issue was the program and funding requests for 2012-2017
- In my 20 min presentation, I spend about half the time on the backward EC EMC
- The backward EC EMC is part of the instrumentation project we had for the last 6 years → our hope is to secure sufficient funding that Bergen can contribute to the construction of the backward EC EMC
- Vera asked about occupancy in the strips from machine backgrounds
 This is an issues that needs to be studied in simulation using a realistic machine background model
- Man power issues were addressed by John
- From Steinar Stapnes coordinator of the Norwegian HEP program I heard that the review went well

Manpower Issues

- Through the EU project AIDA I will be able to hire a postdoc in Bergen this summer who will work 50% on the backward EC EMC prototype
- One of my ATLAS master students is interested in gaining hardware experience
 he will help with strip testing and prototype construction
- A reorganization at the department will pour more technical students into the HEP group → may get a new student in the fall
- At the AIDA kickoff meeting at CERN early February, I spoke with Felix Sefkow, spokesman of the CALICE collaboration, trying to get him and his group interested in SuperB
- Felix said that he was interested in the EMC and the muon system but that the research director (Joachim Mnich) was somewhat hesitant
- Despite the issue if DESY will join or not, Felix said that he may be able to help me with the prototype (cutting of strips) through their prototype R&D funding, in particular if the DESY test beam is used
 he needs to talk to his engineer to find out if machining of plastic scintillators still can be done at DESY

Scintillator Strip Cutting

- We need 96 logarithmic spiral strips and 48 radial sector strips
- It takes about 1h to cut the strip shape from the sheet \rightarrow 144 hours
- It takes about 20 min to cut the fiber groove and 10 min to mill the MPPC groove → 72 hours
- Thus, the production of all 144 strips should take about 29 days > 6 weeks
- So the strips could be ready for stacking earliest middle of June

MPPC Choice

- We presently use the 25 μm pixel
 MPPCs to read out the Y11 fiber
- According to Eugenio's study the backward EC EMC will see 10⁹ n/mm² after 10 years
- If the n radiation level turns out to be to high in the backward EC EMC we can switch to 20 µm or 15 µm pixel detectors that work fine after 10¹¹ n/mm²
- Saturation curve is not effected by irradiation, response is reduced by 40%

Particle Identification: dE/dx

- A 0.5 GeV π is at the minimum while a 0.5 GeV K is below the minimum
- For MIPs, ∆E= 100 MeV in 24 layers
- For particles below minimum dE/dx increases with depth (1/β²)

→ look at dE/dx pattern and combine it dE/dx information from SVT and DCH → improve K/ π separation (3 σ) up to 0.6-0.7 GeV

Summary and Next Steps

- We have all major components in Bergen and have the resources to purchase the few missing items
- The strip production is and has been the bottleneck over several months > hopefully DESY will help out
- The manpower situation will improve with hiring a postdoc
- Measure light yield and uniformity of radial sector strip in April
- Decide on reflector sheets and order them (tend towards Tyvec)
- Measure properties of 2 strip segments connected via one Y11 fiber
- I am pushing hard to have one spiral strip produced by the Bergen machine shop before Easter to study its light yield performance
- I am still aiming for test beam at DESY in the fall of 2011 and at Frascati in 2012?