

# test beam data analysis

#### Alessandro Rossi, Stefano Germani, Elisa Manoni

INFN Sez. Perugia & Università di Perugia

EMC session, SuperB workshop, LNF, April 04, 2011

### Outline

- Data analysis
  - APD gain temperature dependence in LOW GAIN regime
  - crystal intercalibration in LOW GAIN regime
  - APD/PIN comparison and APD gains

- MC studies
  - pion simultion update
  - energy resolution data-mc comparison
  - beam angle tuning



### Data Analysis

SuperB workshop, EMC sessio

# APD gain vs T in LOW GAIN REGIME: strategy

- sample and selection
  - runs with beam on xtal12, 1 GeV, Low gain (runs 279,348,448) only crystal 12 above threshold (6 countings) Cherenkov signal compatible with MIP hypothesis
- fit to single crystal energy deposit in different temperature ranges (T range: [305,355] ADC pedestal subtracted MIP peak, temperaure range [335,345] adc counts counts, 10 ADC-count steps) Entries Mean RMS to determine ADC counting 140  $\chi^2$  / ndf p0 120 corresponding to peak p1 p2 100 p3 position
- use Langau function
  (gaussian convoluted
  with Landau)



April 6, 2011

### APD gain vs T in LOW GAIN REGIME : correction coefficient



 $maxVal\_corr = maxVal\_meas / (1 + p_0 (T-T_0))$ (maxVal = countings corresponding to peak position)

### Intercalibration: strategy

– sample and selection:

runs with beam on i<sup>th</sup> xtal only i<sup>th</sup> crystal above threshold (10 countings) Cherenkov signal compatible with MIP hypothesis

- Langau Fit to MIP energy deposit to determine maxVal

- i<sup>th</sup> intercalibration coeff C<sub>i</sub> = maxVal\_12 / maxVal\_i
 (nb = some runs @ 3 GeV, other @ 1 GeV; difference in deposited ionization energy taken into account)

- accounting also for temperature correction for APD channels:

maxVal\_corr = maxVal\_meas \*  $C_i$  \* / (1+  $p_0$  (T-T<sub>0</sub>) ) T<sub>0</sub> = 340.486 (HIGH GAIN), 340.605 (LOW GAIN)  $p_0$  = (-0.0028 +/- 0.0002) HIGH GAIN  $p_0$  = (-0.000018 +/- 0.000001) LOW GAIN



Super

#### April 6, 2011



|    | 0                 | 1                 | 2                 | 3                 | 4                 |
|----|-------------------|-------------------|-------------------|-------------------|-------------------|
|    | $2.106 \pm 0.024$ | $2.058\pm0.017$   | $2.972\pm0.017$   | $2.59\pm0.04$     | $2.18\pm0.04$     |
| 5  | $1.263\pm0.008$   | $1.085\pm0.004$   | $0.537 \pm 0.003$ | $1.131\pm0.005$   | $0.979 \pm 0.012$ |
| 10 | $1.757\pm0.012$   | $0.886 \pm 0.004$ | $1.000\pm0.003$   | $1.029\pm0.006$   | $0.965 \pm 0.008$ |
| 15 | $1.265\pm0.014$   | $1.148\pm0.008$   | $1.220\pm0.010$   | $2.178 \pm 0.015$ | $1.178\pm0.012$   |
| 20 | $0.629 \pm 0.005$ | $1.134\pm0.009$   | $1.133\pm0.011$   | $1.076\pm0.007$   | $1.165\pm0.011$   |



\* http://blog.hep.caltech.edu/wiki/index.php/Temperature\_corrected\_inter\_calibration\_Oct28\_update

#### April 6, 2011

### Intercalibration: results LOW GAIN

|    | 0               | 1                 | 2                 | 3                 | 4                 |
|----|-----------------|-------------------|-------------------|-------------------|-------------------|
|    | $0.605\pm0.006$ | $0.606\pm0.006$   | $0.874 \pm 0.005$ | $0.76\pm0.01$     | $0.635 \pm 0.007$ |
| 5  | $1.372\pm0.009$ | $1.044\pm0.004$   | $0.745 \pm 0.004$ | $1.093\pm0.006$   | $1.128 \pm 0.009$ |
| 10 | $1.97\pm0.02$   | $0.968 \pm 0.006$ | $1 \pm 0.003$     | $0.975 \pm 0.004$ | $0.952 \pm 0.006$ |
| 15 | $1.80\pm0.03$   | $1.52\pm0.02$     | $1.71\pm0.05$     | $2.46\pm0.01$     | $1.41 \pm 0.02$   |
| 20 | $0.95\pm0.01$   | $1.24\pm0.02$     | $1.219\pm0.008$   | $1.18\pm0.03$     | $1.31 \pm 0.02$   |



\* http://blog.hep.caltech.edu/wiki/index.php/Temperature\_corrected\_inter\_calibration\_Oct28\_update



### PIN vs APD

#### LOW GAIN

- Expected  $(S)_{APD}/(S)_{PIN}$ :

SuperF

- APD \_coeff ~ 0.25 (geometric attenuation) \* 0.3125 (attenuation before ADC) \* G (gain)
- PIN\_coeff ~ 1 (geometric attenuation) \* 0.5494 (attenuation before ADC) \* 1 (gain)

| xtal | noise           | $\operatorname{signal}$ | S/B        | $\mathrm{S}_{APD}/\mathrm{S}_{PIN}$ | APD gain |
|------|-----------------|-------------------------|------------|-------------------------------------|----------|
| 0    | $1.32\pm0.05$   | $130\pm1$               | $98 \pm 4$ | 0.628 ± 0.000                       | 5        |
| 20   | $1.26\pm0.04$   | $83\pm1$                | $66 \pm 2$ | $0.038 \pm 0.009$                   | 5        |
| 1    | $1.27\pm0.03$   | $130\pm1$               | $102\pm2$  | 0.488 ± 0.007                       | 2        |
| 21   | $1.21\pm0.04$   | $63.4\pm0.8$            | $52\pm2$   | $0.466 \pm 0.007$                   | 3        |
| 2    | $1.058\pm0.017$ | $89.9\pm0.4$            | $85\pm1$   | $0.716 \pm 0.005$                   | 5        |
| 22   | $1.27\pm0.03$   | $64.4\pm0.4$            | $51\pm2$   | 0.110 ± 0.005                       | J        |
| 3    | $1.48\pm0.06$   | $103 \pm 1$             | $69\pm3$   | $0.650 \pm 0.011$                   | 5        |
| 23   | $1.32\pm0.07$   | $67 \pm 1$              | $51\pm3$   | $0.050 \pm 0.011$                   | 5        |
| 4    | $1.35\pm0.02$   | $124\pm1$               | $92 \pm 1$ | 0 192 1 0 009                       | 2        |
| 24   | $1.28\pm0.03$   | $59.9\pm0.9$            | $47 \pm 1$ | $0.463 \pm 0.008$                   | 3        |





#### April 6, 2011

### PIN vs APD

#### HIGH GAIN

- Expected  $(S)_{APD}/(S)_{PIN}$ :

Superi

- APD \_coeff ~ 0.25 (geometric attenuation) \* 0.3125 (attenuation before ADC) \* G (gain)
- PIN\_coeff ~ 1 (geometric attenuation) \* 0.5494 (attenuation before ADC) \* 1 (gain)

| xtal | noise           | signal       | S/B          | $\mathrm{S}_{APD}/\mathrm{S}_{PIN}$ | APD gain |
|------|-----------------|--------------|--------------|-------------------------------------|----------|
| 0    | $1.32\pm0.04$   | $128\pm1$    | $97 \pm 4$   | $2.00 \pm 0.07$                     | 20       |
| 20   | $1.36\pm0.05$   | $372\pm3$    | $273 \pm 10$ | $2.90 \pm 0.07$                     | 20       |
| 1    | $1.28\pm0.03$   | $131\pm1$    | $102\pm2$    | $1.58 \pm 0.02$                     | 11       |
| 21   | $1.30\pm0.05$   | $207\pm2$    | $159\pm 6$   | $1.00 \pm 0.02$                     | 11       |
| 2    | $1.029\pm0.016$ | $90.6\pm0.4$ | $88 \pm 12$  | $2.28 \pm 0.02$                     | 16       |
| 22   | $1.29\pm0.05$   | $207\pm2$    | $160\pm 6$   | 2.20 ± 0.02                         | 10       |
| 3    | $1.48\pm0.06$   | $104\pm1$    | $70 \pm 3$   | $2.09 \pm 0.02$                     | 15       |
| 23   | $1.25\pm0.05$   | $217\pm1$    | $173\pm7$    | $2.08 \pm 0.02$                     | 10       |
| 4    | $1.349\pm0.024$ | $124\pm2$    | $92\pm2$     | $1.62 \pm 0.02$                     | 11       |
| 24   | $1.25\pm0.03$   | $201\pm2$    | $161\pm4$    | $1.02 \pm 0.03$                     | 11       |





### **MC** studies



### Pion total energy

– The original pion simulation had the wrong charge The pion simulation with  $\pi$ - show a better agreement with data





Super

### Electron Energy Resolution vs Energy



### Beam center of gravity

Scanning MC X and Y beam angle we found the "correct" beam direction to match DATA center of gravity position



Need to combine X and Y angle in a single MC run

Superi

## Crystal multiplicity

Beam angle sligthly affects the crystal multiplicity DATA multiplicity is still higher





April 6, 2011

### Energy resolution versus beam angle

Beam angle sligthly affects the Energy Resolution Not enough to reach DATA agreement



### Conclusions

Data analysis

- Temperature correction and calibration of low gain data using MIPs performed
- APD gain in low gain regime ~ 3-5
- Next step is studying resolution on electrons

MC studies

- Some attempts made to improve data-MC comparison (high gain regime)
- Data resolution still ~ 2% far from MC value
- changing X and/or Y beam angle in MC may improve the comparison, even if the angle effect seems to be small compared to data-Mc discrepancy