

FastSim V0.2.6 Dch Occupancy Studies with Bhwide April 4, 2011

Contract Series Weights Darren Swersky, McGill University

Angle Cut Optimization Scheme

 Ran 1000k events at angles 1-179 deg, 2-178 deg, 5-175 deg for Long Backward & Forward geometry, shielded and unshielded, looked for events where something entered drift chamber

Angle Cut Optimization Scheme: Unshielded

Angle Cut Optimization Scheme: Unshielded

Angle Cut Optimization Scheme: Unshielded

Angle Cut Optimization Scheme: Shielded

Angle Cut Optimization Scheme: Shielded

Angle Cut Optimization Scheme: Shielded

Angle Cut Optimization Scheme: Bhwide Parameters

Configuration	Subsample	σ_{tot} (nb)	Parameter	Value (°)
Unshielded	1	1071.2 ± 0.9	minThetaElectron	0.0
			maxThetaElectron	9.0
			minThetaPositron	0.0
			maxThetaPositron	173.0
	2	273.2 ± 0.4	minThetaElectron	9.0
			maxThetaElectron	180.0
			minThetaPositron	0.0
			maxThetaPositron	180.0
Shielded	1	197.3 ± 0.3	minThetaElectron	0.0
			maxThetaElectron	20.0
			minThetaPositron	0.0
			maxThetaPositron	165.0
	2	45.8 ± 0.1	minThetaElectron	20.0
			maxThetaElectron	180.0
			minThetaPositron	0.0
			maxThetaPositron	180.0

Angles are w.r.t. incoming electron

•For each configuration, we have two subsamples, weighted by total cross-section

- Unshielded case: 400k events for subsample 1, 100k events for subsample 2
- Shielded case: 80k events for subsample 1, 20k events for subsample 2

•Main consideration in simulated number of events for each configuration is the file size

Geometric Consistency Checks

New scheme simulations still match well with first-order geometric approximations in unshielded case (axis scaling is set for comparisons with Long Backward & Forward)
Interesting results for predicted Dch hits vs. angle compared to simulated hits vs. angle
Right-hand graph: red=geometrical approximation, black=simulation (legend needs fixing)

Geometric Consistency Checks

New scheme simulations still match well with first-order geometric approximations in unshielded case (axis scaling is set for comparisons with Long Backward & Forward)
Interesting results for predicted Dch hits vs. angle compared to simulated hits vs. angle
Right-hand graph: red=geometrical approximation, black=simulation (legend needs fixing)

Geometric Consistency Checks

•The match is obviously not good for inner wires in shielded case

Tracking Particles Entering and Exiting Dch

•Code must be modified to better account for particles bouncing off Dch boundaries without crossing, this is next priority

Conclusions

This analysis uses FastSim V0.2.6, V0.2.7 was released last week
Beamshield must still be modified to match changes in FullSim as well as to implement improved thickness simulation scheme

Questions from LLWI 2011:

Why tungsten beamshield instead of depleted uranium?
Why only wedding cake endplates on one side of Dch?
Does luminosity vary substantially depending on the flavour of B produced?

Latest BAD will be available at http://www.hep.physics.mcgill.ca/~swerskyd /swersky_BAD_april4.pdf