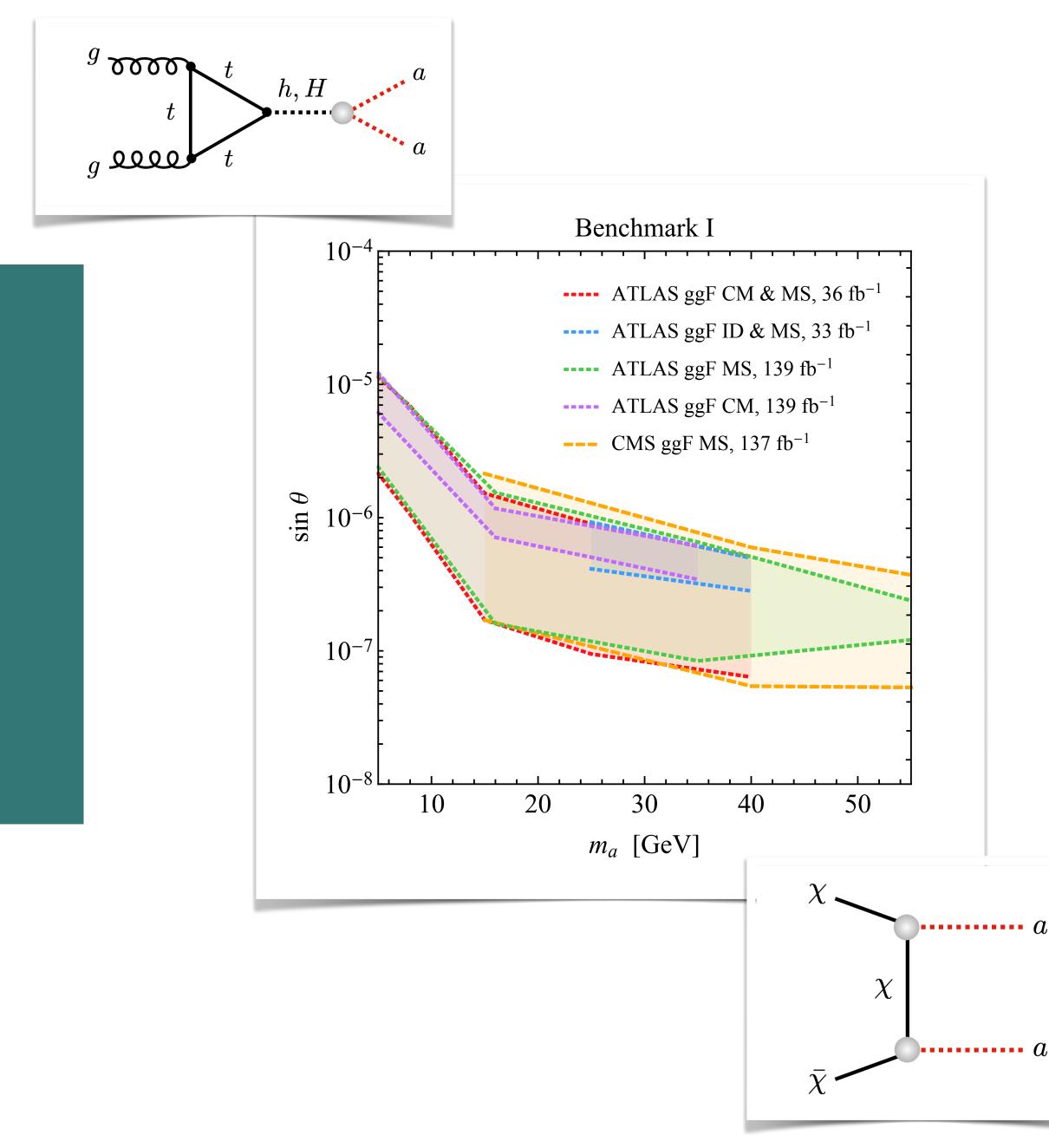


Long-lived particle phenomenology in the 2HDM+*a* model

Luc Schnell

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile March 10, 2023

Based on ArXiv:2302.02735 (U. Haisch, LS)



1. Introduction

- **1.1 Motivation**
- **1.2 2HDM+**a in a nutshell
- **1.3** E_T^{miss} signatures

1. Introduction

1.1 Motivation

UV-complete DM benchmarks

Sources: <u>ArXiv:1510.02110</u> (F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl).

UV-complete DM benchmarks

• Dark matter (DM) has become one of the prime targets of BSM searches at the LHC.

UV-complete DM benchmarks

- **Dark matter (DM)** has become one of the prime targets of BSM searches at the LHC. •
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

UV-complete DM benchmarks

- **Dark matter (DM)** has become one of the prime targets of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

Simplified models: e.g.

 $\mathscr{L} \supset -g_q^A Z^{\prime \mu} (\bar{q} \gamma_\mu \gamma^5 q)$

 $-g^{A}_{DM}Z^{\prime\mu}(\bar{\chi}\gamma_{\mu}\gamma^{5}\chi)$

UV-complete DM benchmarks

- **Dark matter (DM)** has become one of the prime targets of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

Simplified models: e.g.

 $\mathscr{L} \supset -g_q^A Z^{\prime \mu} (\bar{q} \gamma_{\mu} \gamma^5 q) \\ -g_{DM}^A Z^{\prime \mu} (\bar{\chi} \gamma_{\mu} \gamma^5 \chi) \longrightarrow \mathbf{UV-complete \ benchmarks}$

UV-complete DM benchmarks

- **Dark matter (DM)** has become one of the prime targets of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

Simplified models: e.g.

Mixing with scalar sector

Sources: ArXiv:1510.02110 (F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl).

 $\mathscr{L} \supset -g_q^A Z^{\prime \mu} (\bar{q} \gamma_\mu \gamma^5 q) \\ -g_{DM}^A Z^{\prime \mu} (\bar{\chi} \gamma_\mu \gamma^5 \chi) \longrightarrow \mathbf{UV-complete \ benchmarks}$

UV-complete DM benchmarks

- **Dark matter (DM)** has become one of the prime targets of BSM searches at the LHC.

Simplified models: e.g.

• Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically? $\mathscr{L} \supset -g_q^A Z^{\prime \mu} (\bar{q} \gamma_{\mu} \gamma^5 q)$ - $g_{DM}^A Z^{\prime \mu} (\bar{\chi} \gamma_{\mu} \gamma^5 \chi)$ \rightarrow UV-complete benchmarks

Mixing with scalar sector

• Mixing of a DM mediator with the (extended) scalar sector leads to a rich and interesting collider phenomenology.

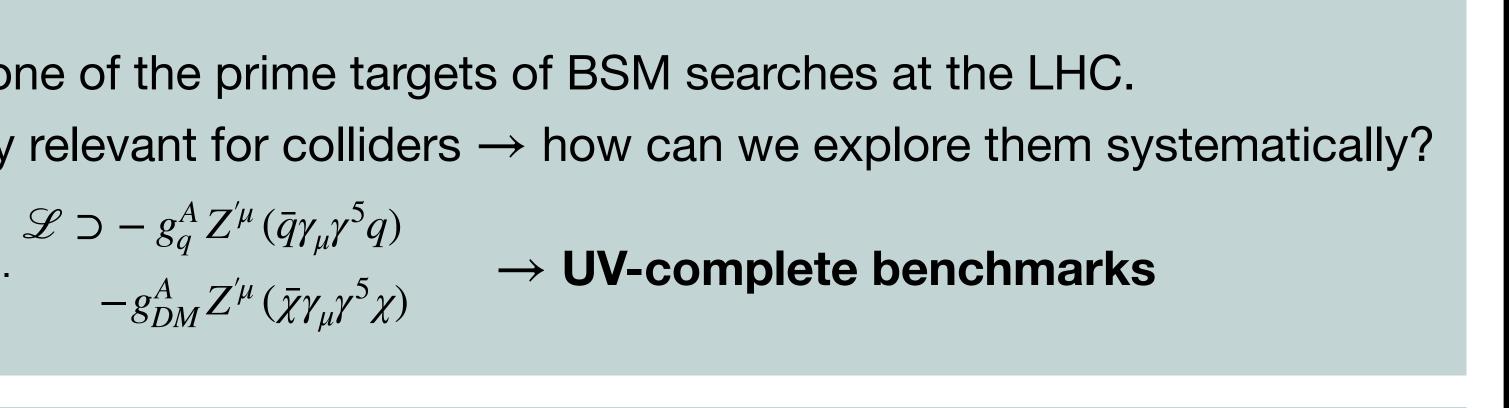
UV-complete DM benchmarks

- **Dark matter (DM)** has become one of the prime targets of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

Simplified models: e.g.

Mixing with scalar sector

Mixing of a DM mediator with the (extended) scalar sector leads to a rich and interesting collider phenomenology.



2HDM scalar potential $V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + \left(\mu_{3}H_{1}^{\dagger}H_{2} + \text{h.c.}\right) + \lambda_{1}\left(H_{1}^{\dagger}H_{1}\right)^{2} + \lambda_{2}\left(H_{2}^{\dagger}H_{2}\right)^{2} + \lambda_{3}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{2}^{\dagger}H_{2}\right) + \lambda_{4}\left(H_{1}^{\dagger}H_{2}\right)\left(H_{2}^{\dagger}H_{1}\right) + \left[\lambda_{5}\left(H_{1}^{\dagger}H_{2}\right)^{2} + \text{h.c.}\right].$

2HDM scalar potential

HD 1

$$V_H = \mu_1 H_1^{\dagger} H_1 + \mu_2 H_2^{\dagger} H_2 + (\mu_3 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4$$

 ${}_{3}H_{1}^{\dagger}H_{2} + \text{h.c.} + \lambda_{1} \left(H_{1}^{\dagger}H_{1}\right)^{2} + \lambda_{2} \left(H_{2}^{\dagger}H_{2}\right)^{2}$ ${}_{4} \left(H_{1}^{\dagger}H_{2}\right) \left(H_{2}^{\dagger}H_{1}\right) + \left[\lambda_{5} \left(H_{1}^{\dagger}H_{2}\right)^{2} + \text{h.c.}\right].$

2HDM scalar potential

$$HD 1 HD 2$$
$$V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + (\mu_{3} + \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}$$

 ${}_{3}H_{1}^{\dagger}H_{2} + \text{h.c.} + \lambda_{1} \left(H_{1}^{\dagger}H_{1}\right)^{2} + \lambda_{2} \left(H_{2}^{\dagger}H_{2}\right)^{2}$ ${}_{4} \left(H_{1}^{\dagger}H_{2}\right) \left(H_{2}^{\dagger}H_{1}\right) + \left[\lambda_{5} \left(H_{1}^{\dagger}H_{2}\right)^{2} + \text{h.c.}\right].$

2HDM scalar potential

$$\begin{aligned} \mathbf{HD} \ \mathbf{I} \quad \mathbf{HD} \ \mathbf{2} \\ V_{H} &= \mu_{1} H_{1}^{\dagger} H_{1} + \mu_{2} H_{2}^{\dagger} H_{2} + \left(\mu_{3} H_{1}^{\dagger} H_{2} + \text{h.c.} \right) + \lambda_{1} \left(H_{1}^{\dagger} H_{1} \right)^{2} + \lambda_{2} \left(H_{2}^{\dagger} H_{2} \right)^{2} \\ &+ \lambda_{3} \left(H_{1}^{\dagger} H_{1} \right) \left(H_{2}^{\dagger} H_{2} \right) + \lambda_{4} \left(H_{1}^{\dagger} H_{2} \right) \left(H_{2}^{\dagger} H_{1} \right) + \left[\lambda_{5} \left(H_{1}^{\dagger} H_{2} \right)^{2} + \text{h.c.} \right] . \end{aligned}$$

Pseudoscalar mediator

$$V_P = \frac{1}{2} m_P^2 P^2 + P \left(i b_P H_1^{\dagger} H_2 + \text{h.c.} \right) + P^2 \left(\lambda_{P1} H_1^{\dagger} H_1 + \lambda_{P2} H_2^{\dagger} H_2 \right) ,$$

2HDM scalar potential

$$\begin{aligned} \mathbf{HD 1} \quad \mathbf{HD 2} \\ V_{H} &= \mu_{1} H_{1}^{\dagger} H_{1} + \mu_{2} H_{2}^{\dagger} H_{2} + \left(\mu_{3} H_{1}^{\dagger} H_{2} + \text{h.c.} \right) + \lambda_{1} \left(H_{1}^{\dagger} H_{1} \right)^{2} + \lambda_{2} \left(H_{2}^{\dagger} H_{2} \right)^{2} \\ &+ \lambda_{3} \left(H_{1}^{\dagger} H_{1} \right) \left(H_{2}^{\dagger} H_{2} \right) + \lambda_{4} \left(H_{1}^{\dagger} H_{2} \right) \left(H_{2}^{\dagger} H_{1} \right) + \left[\lambda_{5} \left(H_{1}^{\dagger} H_{2} \right)^{2} + \text{h.c.} \right] . \end{aligned}$$

Pseudoscalar mediator

$$V_P = \frac{1}{2} m_P^2 P^2 + P\left(ib_P H_1^{\dagger} H_2 + \text{h.c.}\right) + P^2 \left(\lambda_{P1} H_1^{\dagger} H_1 + \lambda_{P2} H_2^{\dagger} H_2\right) ,$$

2HDM scalar potential

$$HD 1 HD 2$$

$$V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + (\mu_{3}H_{1}^{\dagger}H_{2} + \text{h.c.}) + \lambda_{1}(H_{1}^{\dagger}H_{1})^{2} + \lambda_{2}(H_{2}^{\dagger}H_{2})^{2}$$

$$+ \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) + [\lambda_{5}(H_{1}^{\dagger}H_{2})^{2} + \text{h.c.}].$$

Pseudoscalar mediator

$$V_P = \frac{1}{2} m_P^2 P^2 + P\left(ib_P H_1^{\dagger} H_2 + \text{h.c.}\right) + P^2 \left(\lambda_{P1} H_1^{\dagger} H_1 + \lambda_{P2} H_2^{\dagger} H_2\right) ,$$

Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).

$$\mathcal{L}_{\chi} = -i y_{\chi} P \, \bar{\chi} \gamma_5 \chi \,,$$

Fermionic DM

2HDM s pote

$$\begin{aligned} & \mathsf{HD} \ \mathbf{1} \quad \mathsf{HD} \ \mathbf{2} \\ V_{H} &= \mu_{1} H_{1}^{\dagger} H_{1} + \mu_{2} H_{2}^{\dagger} H_{2} + \left(\mu_{3} H_{1}^{\dagger} H_{2} + \mathrm{h.c.}\right) + \lambda_{1} \left(H_{1}^{\dagger} H_{1}\right)^{2} + \lambda_{2} \left(H_{2}^{\dagger} H_{2}\right)^{2} \\ &+ \lambda_{3} \left(H_{1}^{\dagger} H_{1}\right) \left(H_{2}^{\dagger} H_{2}\right) + \lambda_{4} \left(H_{1}^{\dagger} H_{2}\right) \left(H_{2}^{\dagger} H_{1}\right) + \left[\lambda_{5} \left(H_{1}^{\dagger} H_{2}\right)^{2} + \mathrm{h.c.}\right] . \end{aligned}$$

$$h_{P}^{2} P^{2} + P\left(i b_{P} H_{1}^{\dagger} H_{2} + \mathrm{h.c.}\right) + P^{2} \left(\lambda_{P1} H_{1}^{\dagger} H_{1} + \lambda_{P2} H_{2}^{\dagger} H_{2}\right) , \qquad \mathcal{L}_{\chi} = -i y_{\chi} P \, \bar{\chi} \gamma_{5} \chi, \qquad \mathsf{Fermion} \\ \mathsf{DM} \end{aligned}$$

Pseudoscalar mediator

Scalar
ential
$$V_{H} = \mu_{1}H_{1}H_{1} + \mu_{2}H_{2}H_{2} + (\mu_{3}H_{1}H_{2} + \text{h.c.}) + \lambda_{1}(H_{1}H_{1}) + \lambda_{2}(H_{2}H_{2}) + \lambda_{2}(H_{2}H_{2}) + \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) + [\lambda_{5}(H_{1}^{\dagger}H_{2})^{2} + \text{h.c.}] .$$
$$V_{P} = \frac{1}{2}m_{P}^{2}P^{2} + P(ib_{P}H_{1}^{\dagger}H_{2} + \text{h.c.}) + P^{2}(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}) , \qquad \mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_{5}\chi, \qquad \text{Fermion}$$

2HDM s pote

$$HD 1 HD 2$$

$$V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + (\mu_{3}$$

$$+ \lambda_{2}(H^{\dagger}H_{1})(H^{\dagger}H_{2}) + \lambda_{4}$$

Pseudoscalar mediator

$$V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + (\mu_{3}H_{1}^{\dagger}H_{2} + h.c.) + \lambda_{1}(H_{1}^{\dagger}H_{1})^{2} + \lambda_{2}(H_{2}^{\dagger}H_{2})^{2} + \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) + [\lambda_{5}(H_{1}^{\dagger}H_{2})^{2} + h.c.] .$$

$$V_{P} = \frac{1}{2}m_{P}^{2}P^{2} + P(ib_{P}H_{1}^{\dagger}H_{2} + h.c.) + P^{2}(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}) , \qquad \mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_{5}\chi, \qquad \text{Fermion} DM$$

2HDM s pote

Pseudoscalar mediator

$$V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + (\mu_{3}H_{1}^{\dagger}H_{2} + h.c.) + \lambda_{1}(H_{1}^{\dagger}H_{1})^{2} + \lambda_{2}(H_{2}^{\dagger}H_{2})^{2} + \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) + [\lambda_{5}(H_{1}^{\dagger}H_{2})^{2} + h.c.].$$

$$V_{P} = \frac{1}{2}m_{P}^{2}P^{2} + P(ib_{P}H_{1}^{\dagger}H_{2} + h.c.) + P^{2}(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}),$$

$$\mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_{5}\chi,$$
Fermion DM

2HDM s pote

$$\begin{array}{c} \text{HD 1} \quad \text{HD 2} \\ V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + \left(\mu_{3}H_{1}^{\dagger}H_{2} + \text{h.c.}\right) + \lambda_{1}\left(H_{1}^{\dagger}H_{1}\right)^{2} + \lambda_{2}\left(H_{2}^{\dagger}H_{2}\right)^{2} \\ + \lambda_{3}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{2}^{\dagger}H_{2}\right) + \lambda_{4}\left(H_{1}^{\dagger}H_{2}\right)\left(H_{2}^{\dagger}H_{1}\right) + \left[\lambda_{5}\left(H_{1}^{\dagger}H_{2}\right)^{2} + \text{h.c.}\right]. \end{array} \right) \\ pseudoscal coupling \\ i^{2}_{P}P^{2} + P\left(ib_{P}H_{1}^{\dagger}H_{2} + \text{h.c.}\right) + P^{2}\left(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}\right), \qquad \qquad \mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_{5}\chi, \qquad \begin{array}{c} \text{Fermion} \\ DM \end{array} \right)$$

Pseudoscalar mediator

$$V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + (\mu_{3}H_{1}^{\dagger}H_{2} + h.c.) + \lambda_{1}(H_{1}^{\dagger}H_{1})^{2} + \lambda_{2}(H_{2}^{\dagger}H_{2})^{2} + \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) + [\lambda_{5}(H_{1}^{\dagger}H_{2})^{2} + h.c.].$$

$$V_{P} = \frac{1}{2}m_{P}^{2}P^{2} + P(ib_{P}H_{1}^{\dagger}H_{2} + h.c.) + P^{2}(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}),$$

$$\mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_{5}\chi,$$
Fermion DM

SSB:
$$\langle H_i \rangle = (0, v_i/\sqrt{2})^T$$
 with $v = \sqrt{v_1^2 + v_2^2} \simeq 246 \,\text{GeV}$

2HDM s pote

Pseudoscalar mediator

$$V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + (\mu_{3}H_{1}^{\dagger}H_{2} + h.c.) + \lambda_{1}(H_{1}^{\dagger}H_{1})^{2} + \lambda_{2}(H_{2}^{\dagger}H_{2})^{2}$$

$$+ \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) + [\lambda_{5}(H_{1}^{\dagger}H_{2})^{2} + h.c.].$$

$$V_{P} = \frac{1}{2}m_{P}^{2}P^{2} + P(ib_{P}H_{1}^{\dagger}H_{2} + h.c.) + P^{2}(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}),$$

$$\mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_{5}\chi,$$
Fermioni DM

Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).

Physical fields: h, H, a, A, H^{\pm} (three d.o.f. eaten by Z, W^{\pm}) and χ . **Physical parameters:** α , β , θ , v, λ_3 , λ_{P1} , λ_{P2} , m_h , m_H , m_a , m_A , $m_{H^{\pm}}$.

 α : mixing angle for scalars (*h*, *H*)

SSB:
$$\langle H_i \rangle = (0, v_i/\sqrt{2})^T$$
 with $v = \sqrt{v_1^2 + v_2^2} \simeq 246 \,\mathrm{GeV}$

 θ : mixing angle for pseudo-scalars (a, A)

2HDM s pote

$$\begin{array}{c} \text{HD 1} \quad \text{HD 2} \\ V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + \left(\mu_{3}H_{1}^{\dagger}H_{2} + \text{h.c.}\right) + \lambda_{1}\left(H_{1}^{\dagger}H_{1}\right)^{2} + \lambda_{2}\left(H_{2}^{\dagger}H_{2}\right)^{2} \\ + \lambda_{3}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{2}^{\dagger}H_{2}\right) + \lambda_{4}\left(H_{1}^{\dagger}H_{2}\right)\left(H_{2}^{\dagger}H_{1}\right) + \left[\lambda_{5}\left(H_{1}^{\dagger}H_{2}\right)^{2} + \text{h.c.}\right]. \end{array} \right) \\ pseudoscal coupling \\ h_{P}^{2}P^{2} + P\left(ib_{P}H_{1}^{\dagger}H_{2} + \text{h.c.}\right) + P^{2}\left(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}\right), \qquad \qquad \mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_{5}\chi, \qquad \begin{array}{c} \text{Fermionized on the set of the set of$$

Pseudoscalar mediator

sel

koven ih

Ying byte asisebut

MEC

"All al?

$$V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + (\mu_{3}H_{1}^{\dagger}H_{2} + h.c.) + \lambda_{1}(H_{1}^{\dagger}H_{1})^{2} + \lambda_{2}(H_{2}^{\dagger}H_{2})^{2}$$

$$+ \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1}) + [\lambda_{5}(H_{1}^{\dagger}H_{2})^{2} + h.c.].$$

$$V_{P} = \frac{1}{2}m_{P}^{2}P^{2} + P(ib_{P}H_{1}^{\dagger}H_{2} + h.c.) + P^{2}(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}),$$

$$\mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_{5}\chi,$$
Fermioni DM

Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).

Physical fields: h, H, a, A, H^{\pm} (three d.o.f. eaten by Z, W^{\pm}) and χ . **Physical parameters:** α , β , θ , v, λ_3 , λ_{P1} , λ_{P2} , m_h , m_H , m_a , m_A , $m_{H^{\pm}}$.

 α : mixing angle for scalars (h, H)

SSB:
$$\langle H_i \rangle = (0, v_i/\sqrt{2})^T$$
 with $v = \sqrt{v_1^2 + v_2^2} \simeq 246 \,\mathrm{GeV}$

 θ : mixing angle for pseudo-scalars (a, A)

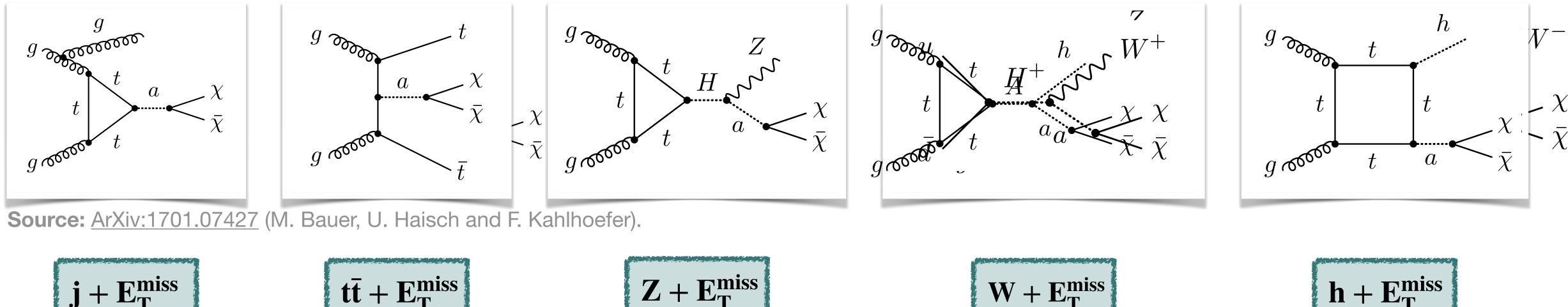
1. Introduction 1.3 E_{T}^{miss} signatures

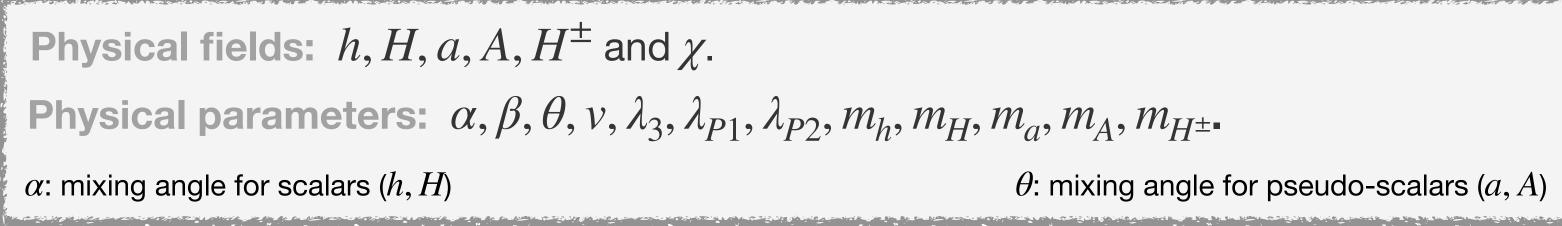
Physical fields: h, H, a, A, H^{\pm} and χ .Physical parameters: $\alpha, \beta, \theta, v, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_{H^{\pm n}}$ α : mixing angle for scalars (h, H) θ : mixing angle for pseudo-scalars (a, A)

and the second state of the se

a superior and a superior of the second s

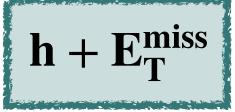
1. Introduction **1.3** E^{miss} signatures





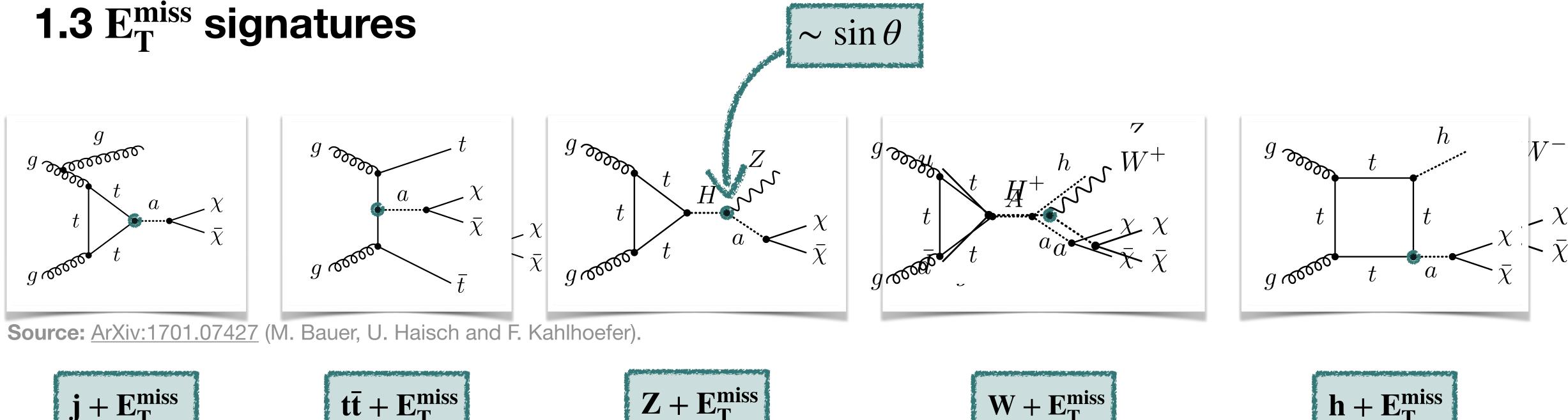
 $Z + E_{T}^{miss}$

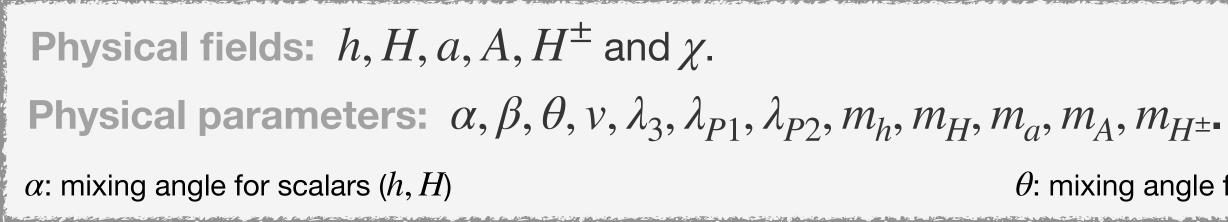
 $W + E_T^{miss}$



 θ : mixing angle for pseudo-scalars (a, A)

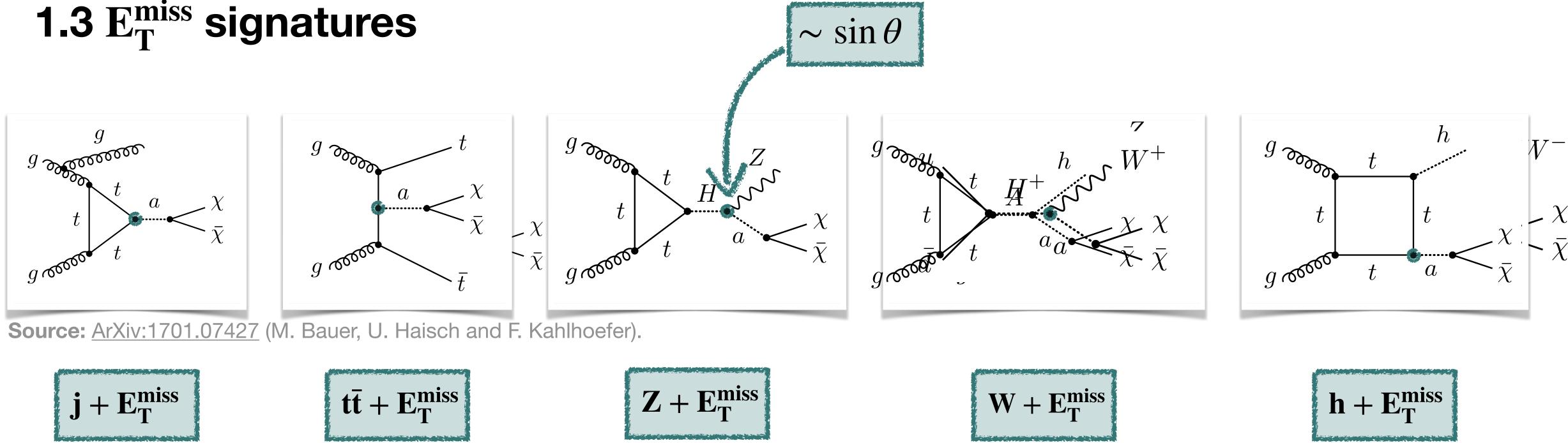
1. Introduction 1.3 E^{miss}_T signatures



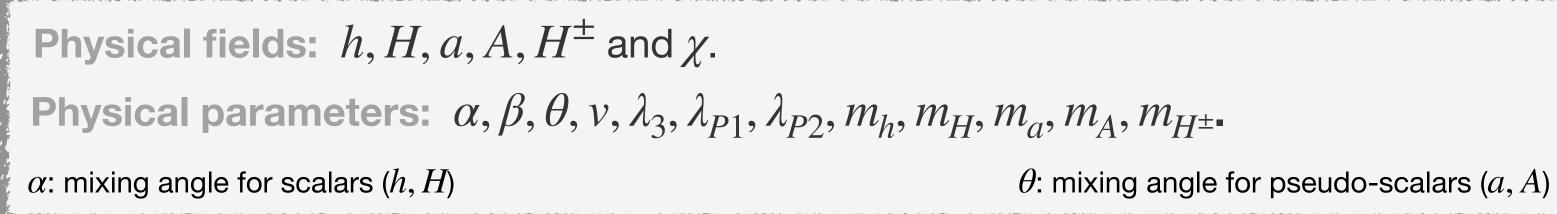


 $m_a, m_A, m_{H^{\pm \bullet}}$ heta: mixing angle for pseudo-scalars (a, A)

1. Introduction **1.3** E_{T}^{miss} signatures



• These E_T^{miss} signatures disappear for small mixing angles $\theta \simeq 0$ ($\rightarrow a \simeq P$).



2. LLP Phenomenology

2.1 Model parameters2.2 LLP constraints2.3 Relic density

2.1 Model parameters

Physical fields: h, H, a, A, H^{\pm} and χ .Physical parameters: $\alpha, \beta, \theta, v, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_{H^{\pm}}$. α : mixing angle for scalars (h, H) θ : mixing angle for pseudo-scalars (a, A)

and a second a first a many second as a second s

• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_{H^{\pm \bullet}}$ α : mixing angle for scalars (h, H) θ : mixing angle for pseudo-scalars (a, A)

• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

$$\Gamma(a \to f\bar{f}) = \frac{N_c^f \eta_f^2 y_f^2}{16\pi} m_a \sqrt{1 - \frac{4m_f^2}{m_a^2}} \sin^2\theta.$$

$$\Gamma\left(a \to gg\right) = \frac{\alpha_s^2}{32\pi^3 v^2} m_a^3 \left| \sum_{q=t,b,c} \eta_q f\left(\frac{4m_q^2}{m_a^2}\right) \right|^2 \sin^2\theta \,,$$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_A$ θ : mixing ang α : mixing angle for scalars (h, H)

$$\Gamma\left(a \to \chi \bar{\chi}\right) = \frac{y_{\chi}^2}{8\pi} m_a \sqrt{1 - \frac{4m_{\chi}^2}{m_a^2}} \cos^2\theta \,,$$

$$n_{H^{\pm \bullet}}$$
nale for pseudo-scalars (a, A

• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

$$\Gamma(a \to f\bar{f}) = \frac{N_c^f \eta_f^2 y_f^2}{16\pi} m_a \sqrt{1 - \frac{4m_f^2}{m_a^2}} \sin^2 \theta$$

$$\Gamma\left(a \to gg\right) = \frac{\alpha_s^2}{32\pi^3 v^2} m_a^3 \left| \sum_{q=t,b,c} \eta_q f\left(\frac{4m_q^2}{m_a^2}\right) \right|^2 \sin^2\theta ,$$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_A$ θ : mixing ang α : mixing angle for scalars (h, H)

$$\Gamma\left(a \to \chi \bar{\chi}\right) = \frac{y_{\chi}^2}{8\pi} m_a \sqrt{1 - \frac{4m_{\chi}^2}{m_a^2}} \cos^2\theta \,,$$

$$n_{H^{\pm \bullet}}$$
nale for pseudo-scalars (a, A

• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

$$\Gamma(a \to f\bar{f}) = \frac{N_c^f \eta_f^2 y_f^2}{16\pi} m_a \sqrt{1 - \frac{4m_f^2}{m_a^2}} \sin^2 \theta$$

$$\Gamma\left(a \to gg\right) = \frac{\alpha_s^2}{32\pi^3 v^2} m_a^3 \left| \sum_{q=t,b,c} \eta_q f\left(\frac{4m_q^2}{m_a^2}\right) \right|^2 \sin^2\theta$$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_A$ θ : mixing ang α : mixing angle for scalars (h, H)

$$\Gamma\left(a \to \chi \bar{\chi}\right) = \frac{y_{\chi}^2}{8\pi} m_a \sqrt{1 - \frac{4m_{\chi}^2}{m_a^2}} \cos^2\theta \,,$$

$$n_{H^{\pm \bullet}}$$
.
Ngle for pseudo-scalars (a, A

• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

$$\Gamma(a \to f\bar{f}) = \frac{N_c^f \eta_f^2 y_f^2}{16\pi} m_a \sqrt{1 - \frac{4m_f^2}{m_a^2}} \sin^2 \theta$$

$$\Gamma\left(a \to gg\right) = \frac{\alpha_s^2}{32\pi^3 v^2} m_a^3 \left| \sum_{q=t,b,c} \eta_q f\left(\frac{4m_q^2}{m_a^2}\right) \right|^2 \sin^2\theta \qquad \Gamma\left(a \to \chi\bar{\chi}\right) = \frac{y_\chi^2}{8\pi} m_a \sqrt{1 - \frac{4m_\chi^2}{m_a^2}} \cos^2\theta \,,$$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_A$ θ : mixing a α : mixing angle for scalars (h, H)

$$n_{H^{\pm \bullet}}$$
 angle for pseudo-scalars (a,A

and a second the second of the

• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

$$\Gamma(a \to f\bar{f}) = \frac{N_c^f \eta_f^2 y_f^2}{16\pi} m_a \sqrt{1 - \frac{4m_f^2}{m_a^2}} \sin^2 \theta$$

$$\Gamma\left(a \to gg\right) = \frac{\alpha_s^2}{32\pi^3 v^2} m_a^3 \left| \sum_{q=t,b,c} \eta_q f\left(\frac{4m_q^2}{m_a^2}\right) \right|^2 \sin^2\theta \qquad \Gamma\left(a \to \chi\bar{\chi}\right) = \frac{y_\chi^2}{8\pi} m_a$$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_A$ θ : mixing ar α : mixing angle for scalars (h, H)

$$n_{H^{\pm \bullet}}$$

4m

• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

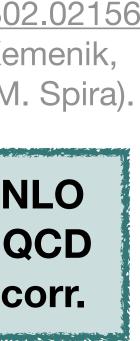
$$\Gamma(a \to f\bar{f}) = \frac{N_c^f \eta_f^2 y_f^2}{16\pi} m_a \sqrt{1 - \frac{4m_f^2}{m_a^2}} \sin^2 \theta$$

$$\Gamma\left(a \to gg\right) = \frac{\alpha_s^2}{32\pi^3 v^2} m_a^3 \left| \sum_{q=t,b,c} \eta_q f\left(\frac{4m_q^2}{m_a^2}\right) \right|^2 \sin^2\theta$$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_A$ α : mixing angle for scalars (h, H) θ : mixing a

$$\Gamma\left(a \to \chi \bar{\chi}\right) = \frac{y_{\chi}^2}{8\pi} m_a \sqrt{1 - \frac{4m_{\chi}^2}{m_a^2}} \cos^2\theta , \qquad +$$

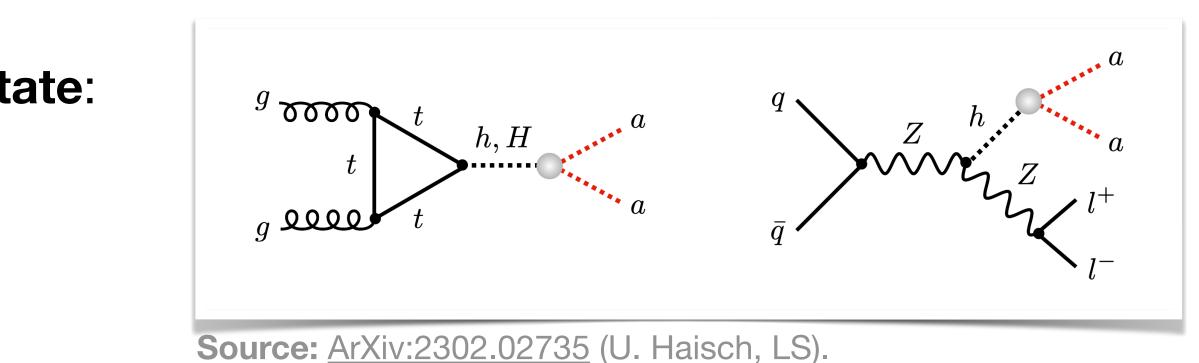
$$n_{H^{\pm ullet}}$$
ngle for pseudo-scalars (a, A



• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

Production via the decay of a heavier spin-0 state:

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_A$ θ : mixing a α : mixing angle for scalars (h, H)



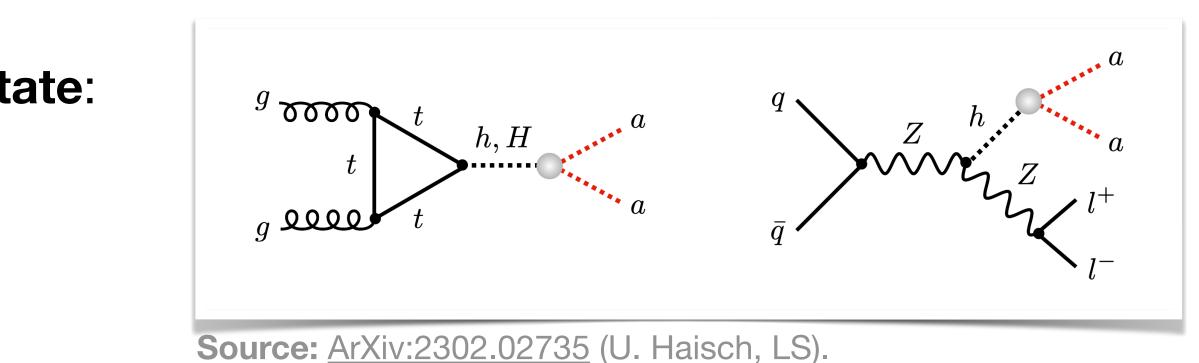
$${}^{l}H^{\pm \bullet}$$
ngle for pseudo-scalars (a, A

• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

Production via the decay of a heavier spin-0 state:

- Benchmark I: $m_a < m_h/2$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_A$ α : mixing angle for scalars (h, H) θ : mixing a



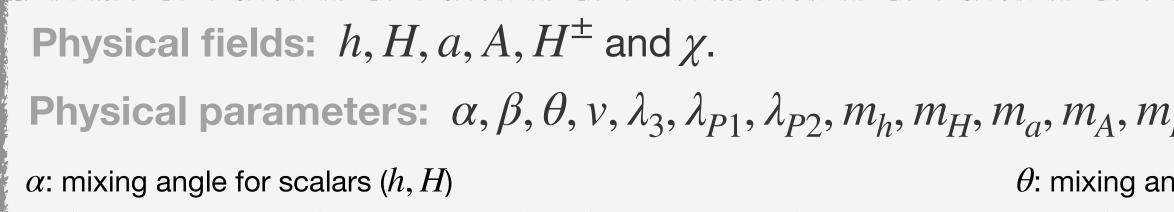
$${}^{l}H^{\pm \bullet}$$
ngle for pseudo-scalars (a, A

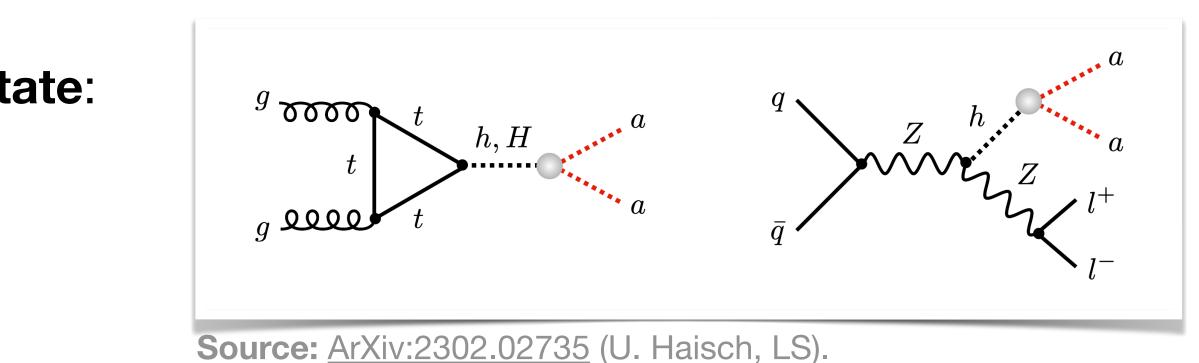
• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

Production via the decay of a heavier spin-0 state:

- Benchmark I: $m_a < m_h/2$

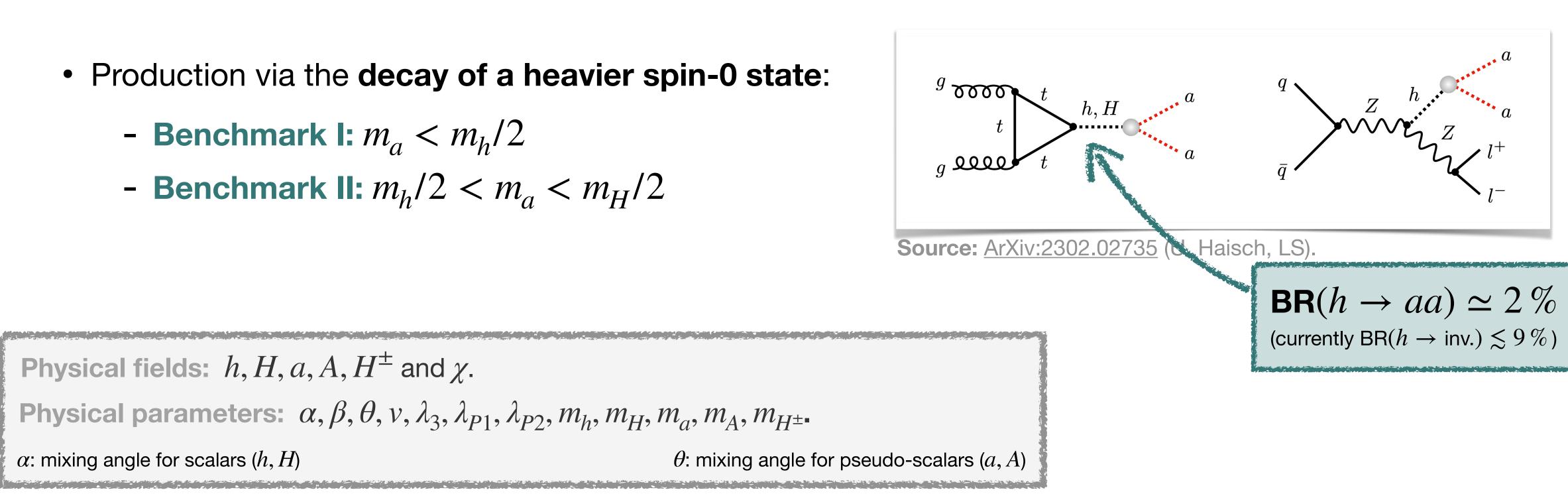
- Benchmark II: $m_h/2 < m_a < m_H/2$





$${}^{l}H^{\pm \bullet}$$
ngle for pseudo-scalars (a, A

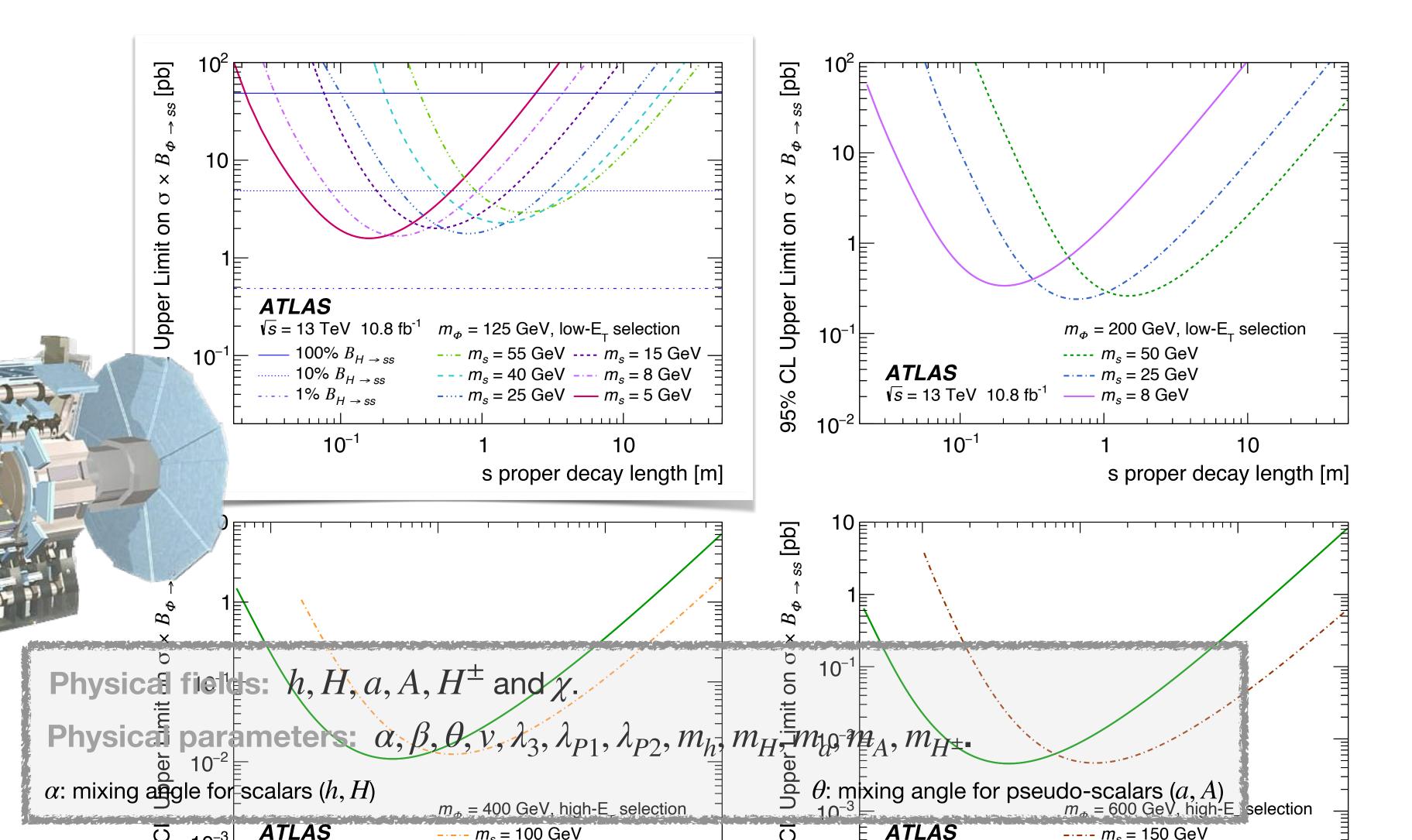
• For small mixing angles θ , the pseudoscalar $a \simeq P$ can become long-lived.

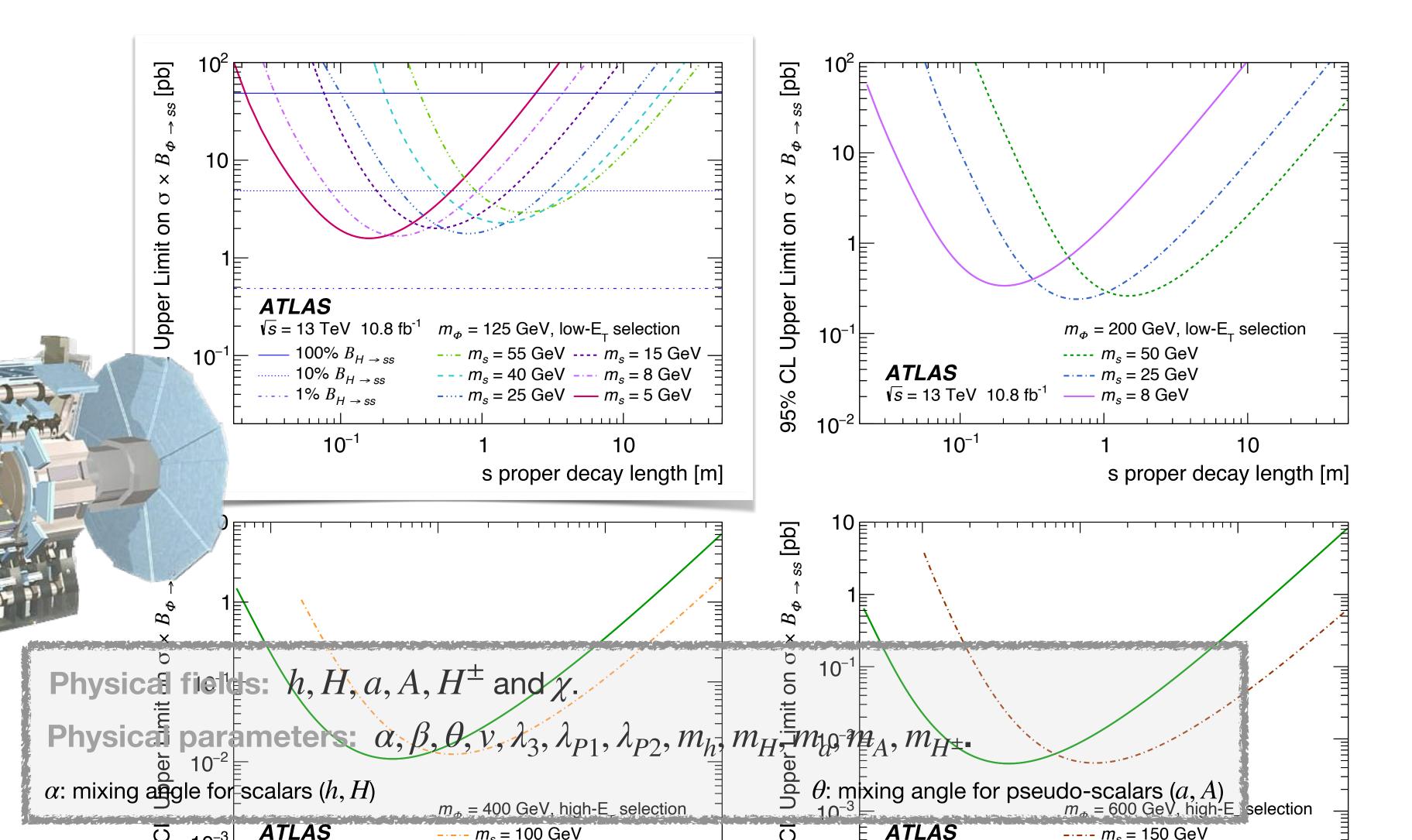


Physical fields: h, H, a, A, H^{\pm} and χ .Physical parameters: $\alpha, \beta, \theta, v, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_{H^{\pm n}}$ α : mixing angle for scalars (h, H) θ : mixing angle for pseudo-scalars (a, A)

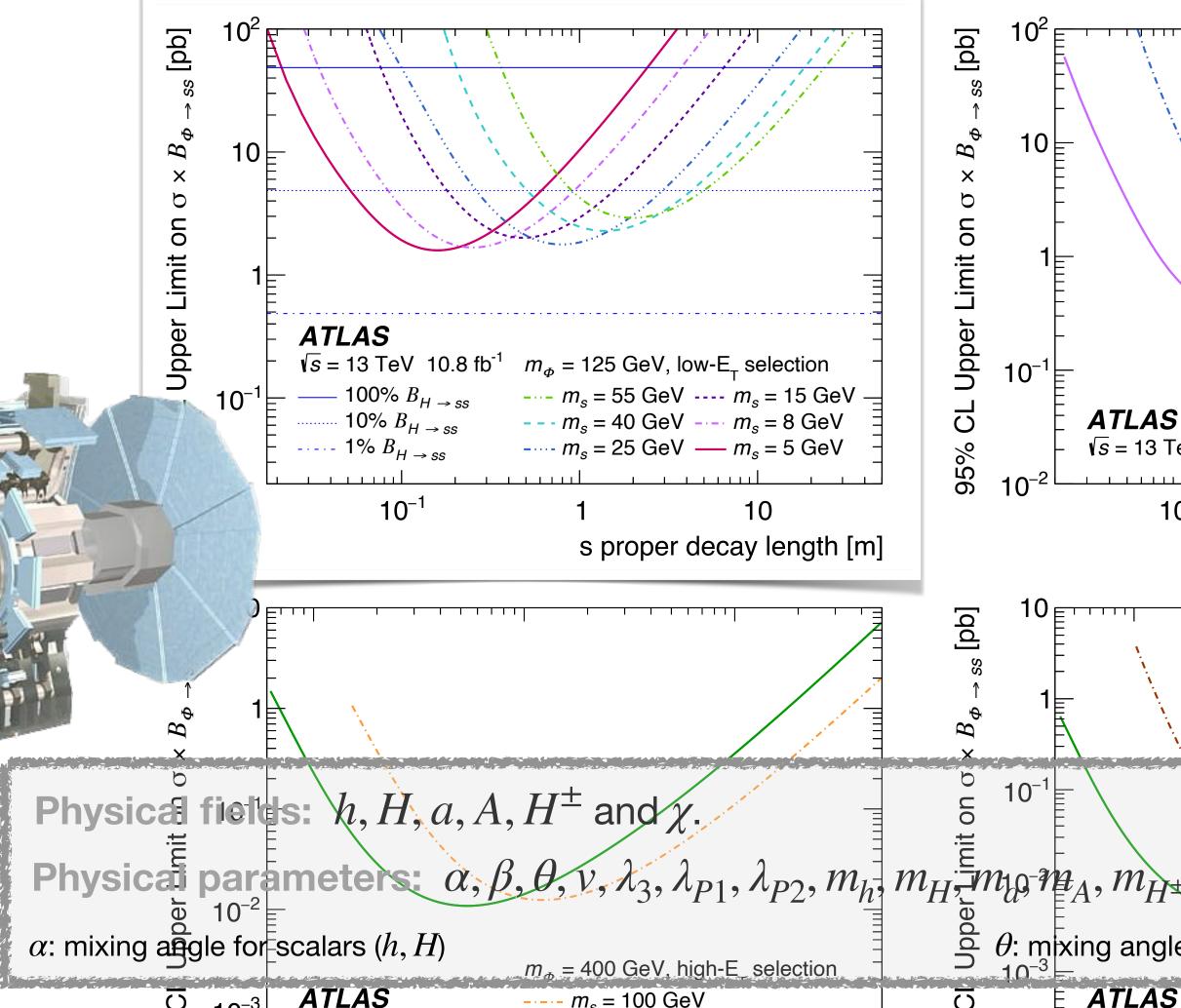
a transmission of the stand of the

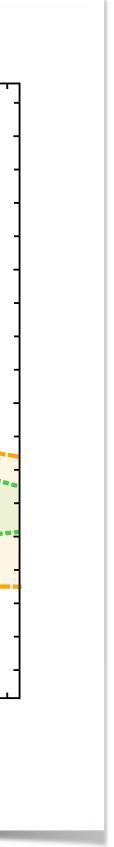
the second s

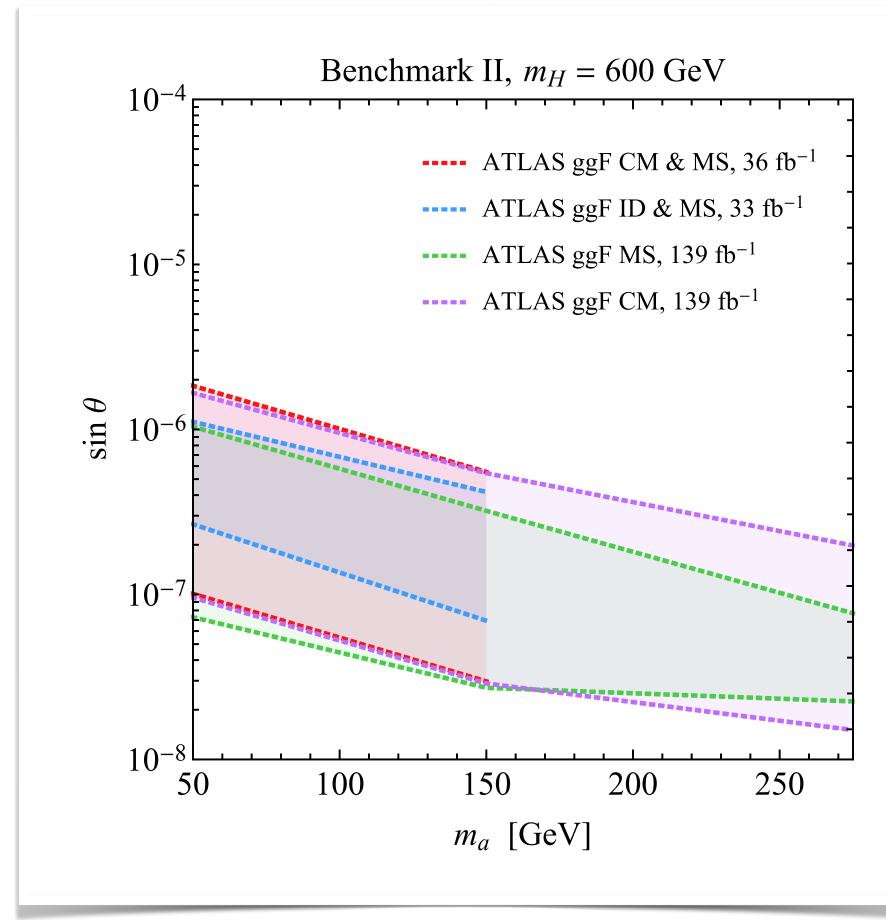




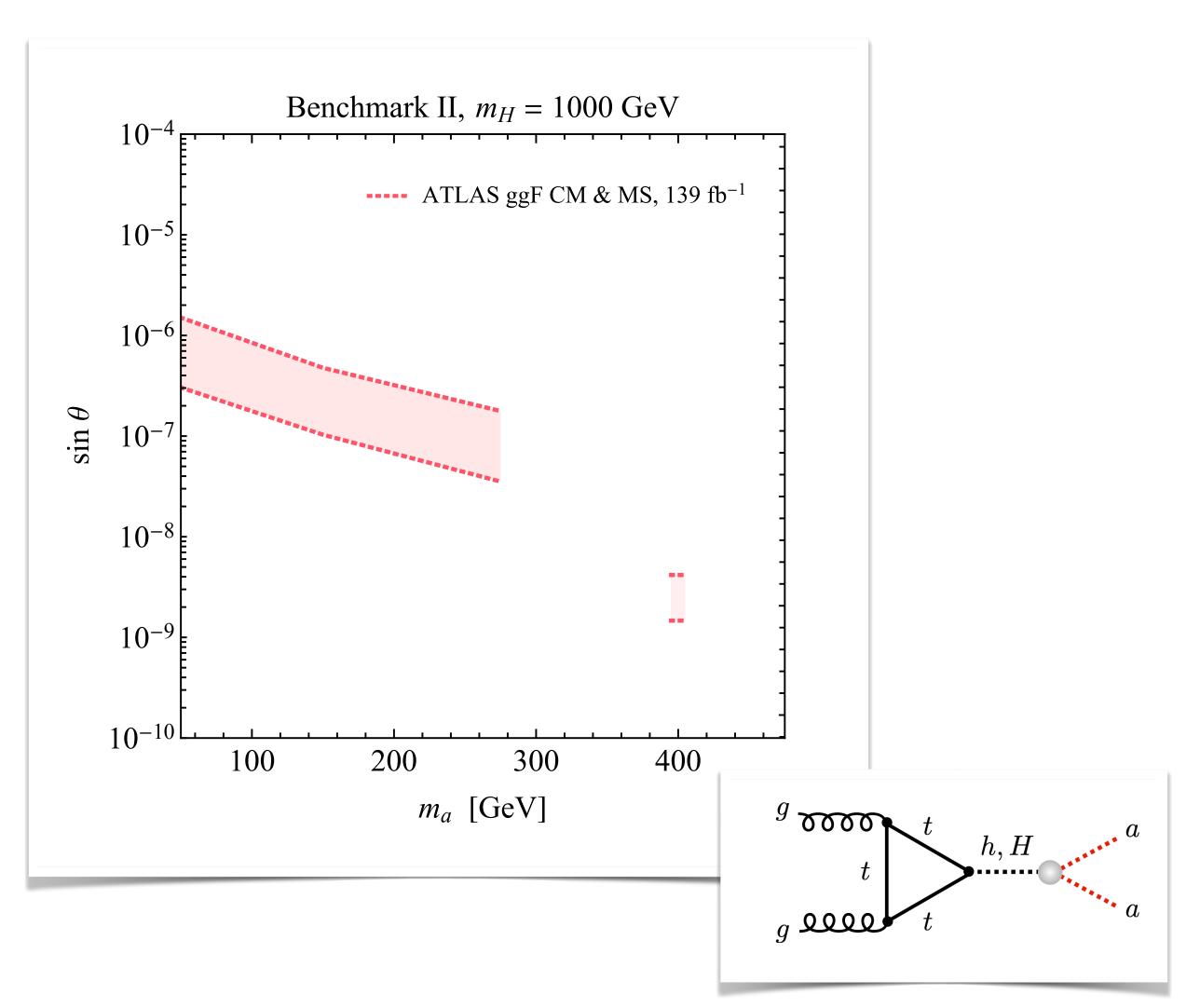
2. LLP Phenomenology **2.2 LLP constraints** Benchmark I 10^{-2} ----- ATLAS ggF CM & MS, 36 fb^{-1} 10² ss [pb] [dd] ----- ATLAS ggF ID & MS, 33 fb^{-1} SS ----- ATLAS ggF MS, 139 fb^{-1} ----- ATLAS ggF CM, 139 fb^{-1} $B_{{\Phi}}$ Φ 10E 10 B ---- CMS ggF MS, 137 fb⁻¹ Х X р р Upper Limit on Upper Limit on ATLAS m_{ϕ} = 125 GeV, low-E_T selection $\sqrt{s} = 13 \text{ TeV} \ 10.8 \text{ fb}^{-1}$ m_{ϕ} = 200 GeV, low-E_T selection 10 100% $B_{H \rightarrow ss}$ ---- $m_s = 55 \text{ GeV} ---- m_s = 15 \text{ GeV} -----$ ----- $m_s = 50 \text{ GeV}$ 10^{-1} CL ATLAS $--m_s = 40 \text{ GeV} - -m_s = 8 \text{ GeV}$ 10% $B_{H \rightarrow ss}$ ---- $m_s = 25 \text{ GeV}$ - 1% $B_{H \rightarrow ss}$ \sqrt{s} = 13 TeV 10.8 fb⁻¹ ----- $m_s = 25 \text{ GeV} - m_s = 5 \text{ GeV}$ ----- *m_s* = 8 GeV 95% 10^{-10} 10^{-1} 10^{-1} 10 10 s proper decay length [m] s proper decay length [m] 20 10 30 40 50 10 FT [dd] m_a [GeV] SS θ : <u>ArXiv:2302.02735</u> (U. Haisch, LS). B 10^{-2} Upp θ : mixing angle for pseudo-scalars (a, A) $m_{\phi} = 600 \text{ GeV}$, high-E selection $m_{\phi} = 400 \text{ GeV}, \text{ high-E} \text{ selection}$ $----m_{e} = 150 \text{ GeV}$

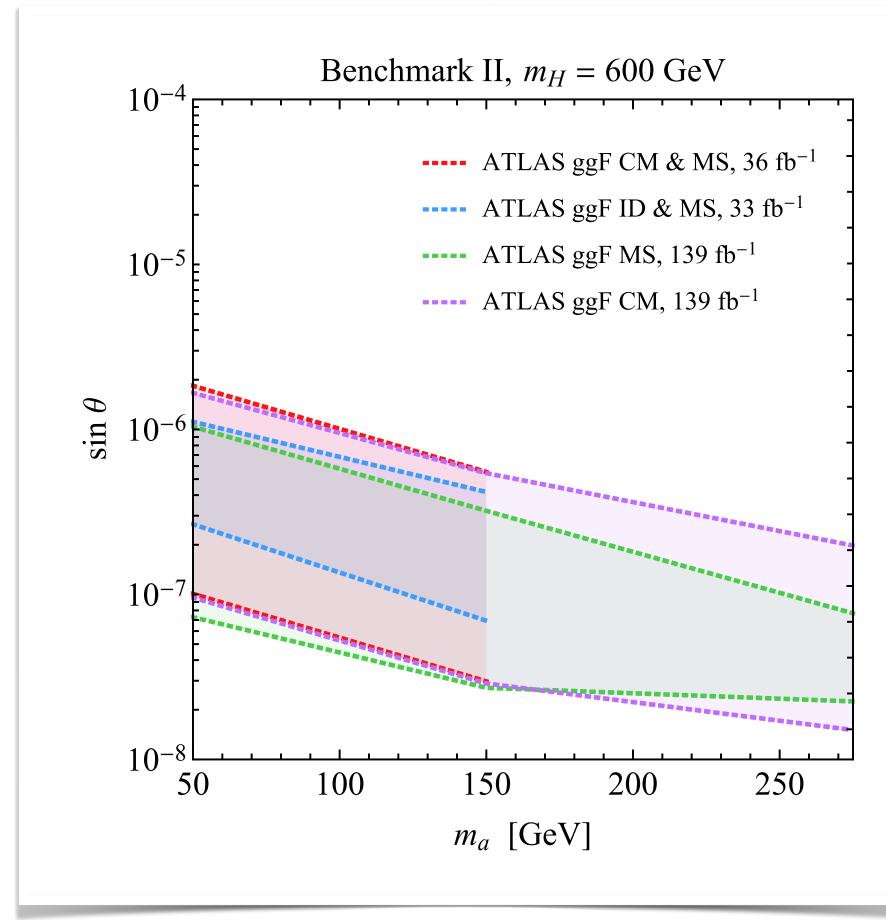






Source: <u>ArXiv:2302.02735</u> (U. Haisch, LS).





Source: <u>ArXiv:2302.02735</u> (U. Haisch, LS).



Physical fields: h, H, a, A, H^{\pm} and χ .Physical parameters: $\alpha, \beta, \theta, v, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_{H^{\pm}}$. α : mixing angle for scalars (h, H) θ : mixing angle for pseudo-scalars (a, A)

in Town and the second second

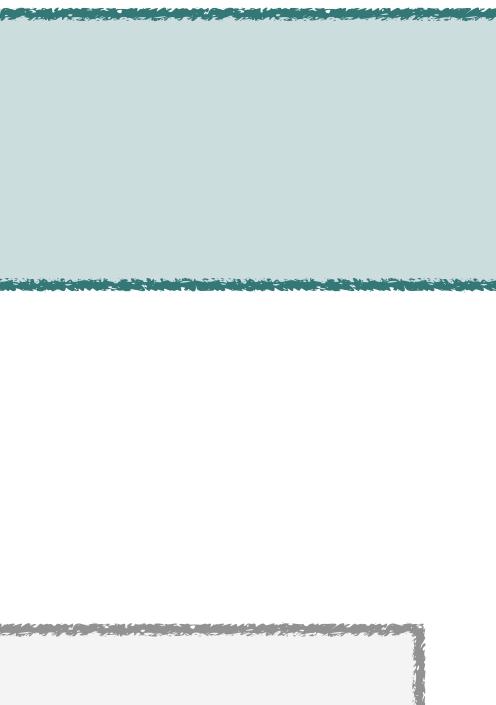
• Can we get the **DM relic density** $\Omega h^2 = 0.120(1)$ right?

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_{H^{\pm \bullet}}$ θ : mixing angle for pseudo-scalars (a, A) α : mixing angle for scalars (h, H)

- Can we get the **DM relic density** $\Omega h^2 = 0.120(1)$ right?
- DM density evolution ("freeze-out"):

 $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\left\langle \sigma v_{rel} \right\rangle \left(n_{\chi}^2 - n_{\chi}^{(eq)2} \right)$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, v, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_{H^{\pm \bullet}}$ α : mixing angle for scalars (h, H) θ : mixing angle for pseudo-scalars (a, A)



- Can we get the **DM relic density** $\Omega h^2 = 0.120(1)$ right?
- DM density evolution ("freeze-out"):

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\left\langle \sigma v_{rel} \right\rangle \left(n_{\chi}^2 - n_{\chi}^{(eq)2} \right)$$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_{H^{\pm \bullet}}$ α : mixing angle for scalars (h, H) θ : mixing angle for pseudo-scalars (a, A)

 $\gamma_{\chi}/T^3 \sim \exp(-m_{\chi}/T)$

- Can we get the **DM relic density** $\Omega h^2 = 0.120(1)$ right?
- DM density evolution ("freeze-out"):

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\left\langle \sigma v_{rel} \right\rangle \left(n_{\chi}^2 - n_{\chi}^{(eq)2} \right) \quad \rightarrow$$

Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_{H^{\pm \bullet}}$ θ : mixing angle for pseudo-scalars (a, A) α : mixing angle for scalars (h, H)

 $m_{\chi}/T^3 \sim \exp(-m_{\chi}/T)$ \rightarrow freeze-out: $n_{\chi} \langle \sigma v_{rel} \rangle \sim H$

- Can we get the DM relic density $\Omega h^2 = 0.120(1)$ right?
- DM density evolution ("freeze-out"):

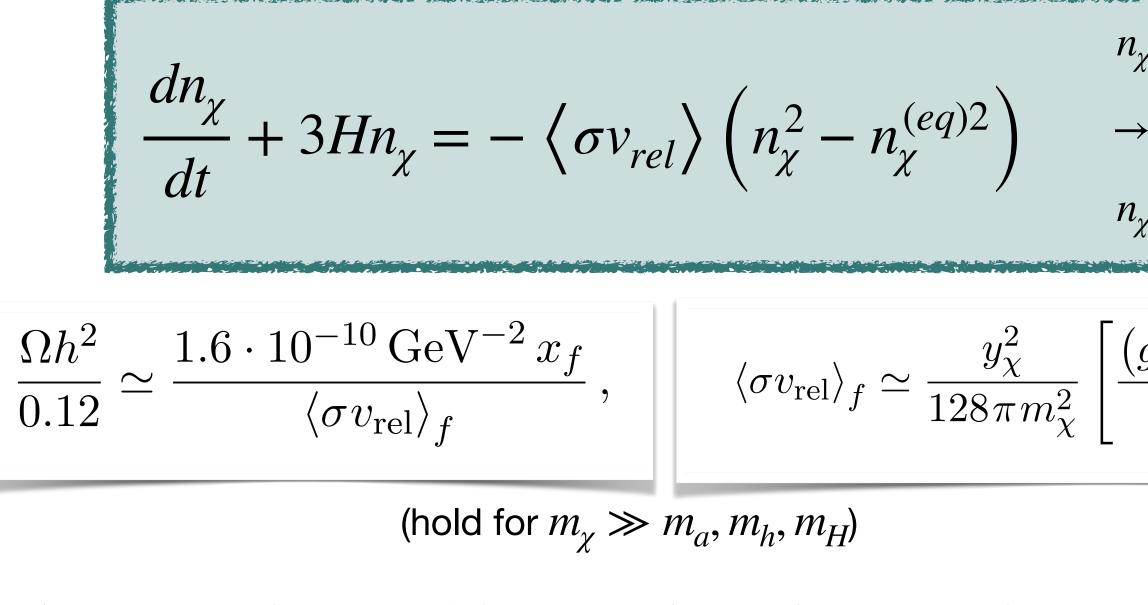
$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\left\langle \sigma v_{rel} \right\rangle \left(n_{\chi}^2 - n_{\chi}^{(eq)2} \right) \qquad \begin{array}{l} n_{\chi}/T^3 \sim \exp(-m_{\chi}/T) \\ \rightarrow \text{freeze-out:} n_{\chi} \left\langle \sigma v_{rel} \right\rangle \sim H \\ n_{\chi}/T^3 \equiv \text{const.} \end{array}$$

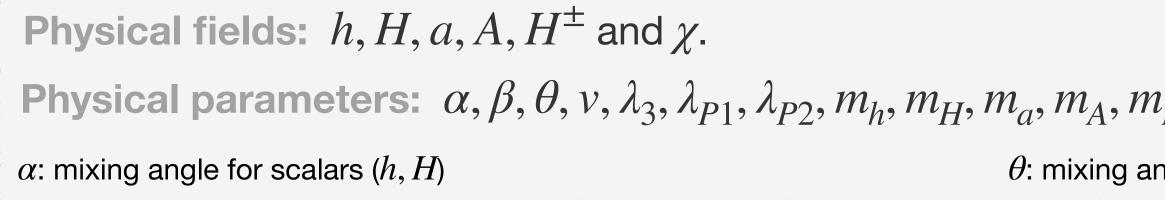
Physical fields: h, H, a, A, H^{\pm} and χ . **Physical parameters:** $\alpha, \beta, \theta, \nu, \lambda_3, \lambda_{P1}, \lambda_{P2}, m_h, m_H, m_a, m_A, m_A$ α : mixing angle for scalars (h, H) θ : mixing a

$$n_{H^{\pm \bullet}}$$
ngle for pseudo-scalars (a,A

and the man and the second and the second

- Can we get the DM relic density $\Omega h^2 = 0.120(1)$ right?
- DM density evolution ("freeze-out"):



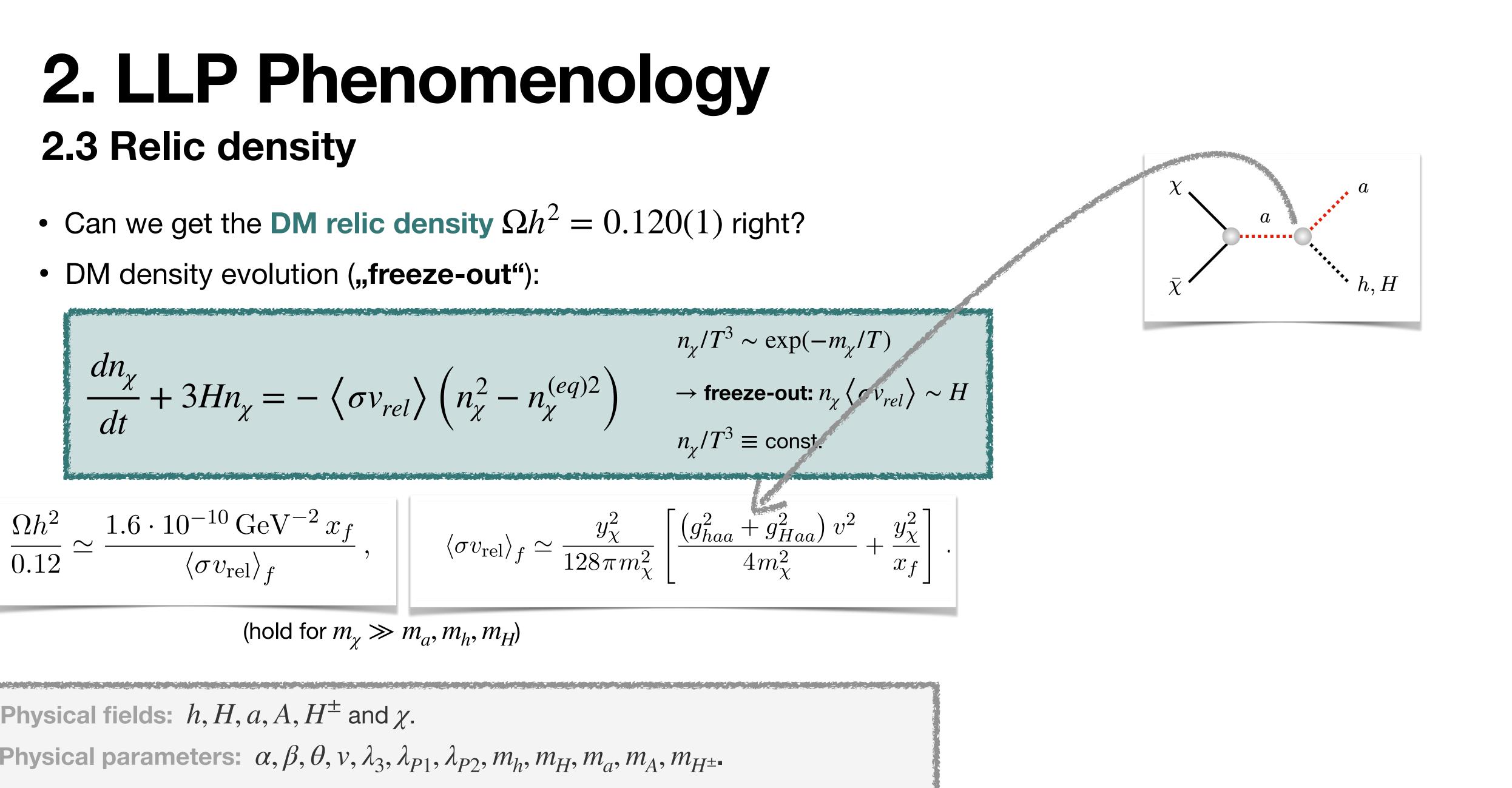


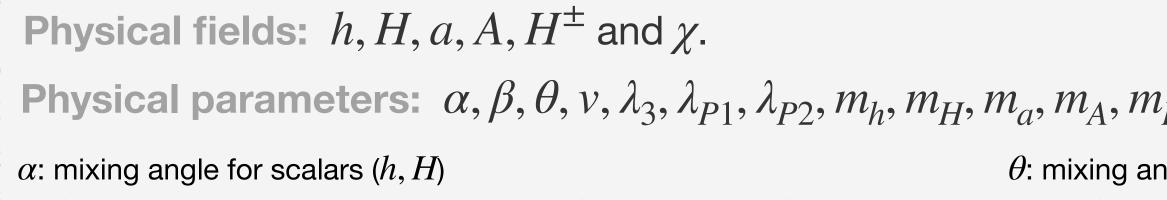
$$f_{\chi}/T^3 \sim \exp(-m_{\chi}/T)$$

 \Rightarrow freeze-out: $n_{\chi} \langle \sigma v_{rel} \rangle \sim H$
 $f_{\chi}/T^3 \equiv \text{const.}$

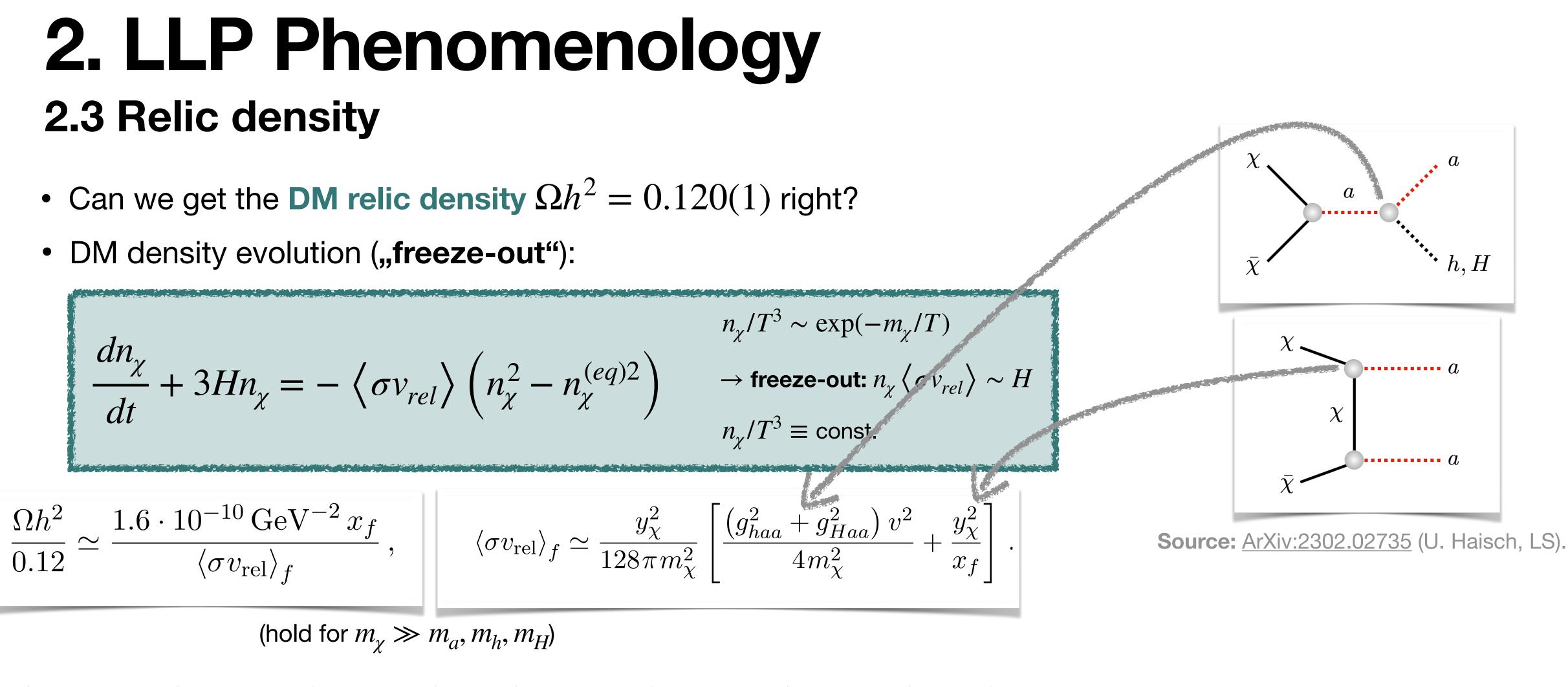
$$\frac{\left(g_{haa}^2 + g_{Haa}^2\right)v^2}{4m_{\chi}^2} + \frac{y_{\chi}^2}{x_f}\right]$$

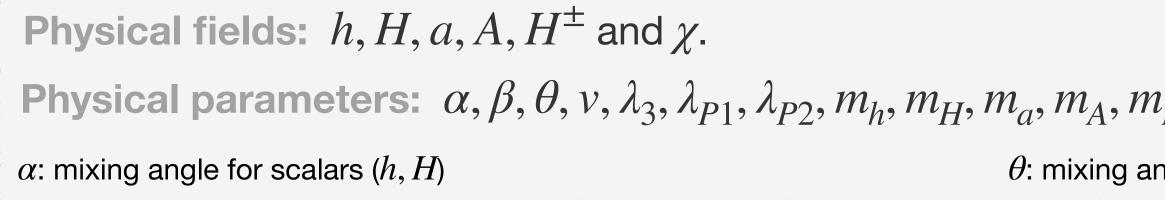
$$p_{H^{\pm \bullet}}$$
ngle for pseudo-scalars (a, A





 θ : mixing angle for pseudo-scalars (a, A)





$$m_a, m_A, m_{H^{\pm ullet}}$$
 $heta$: mixing angle for pseudo-scalars (a, A

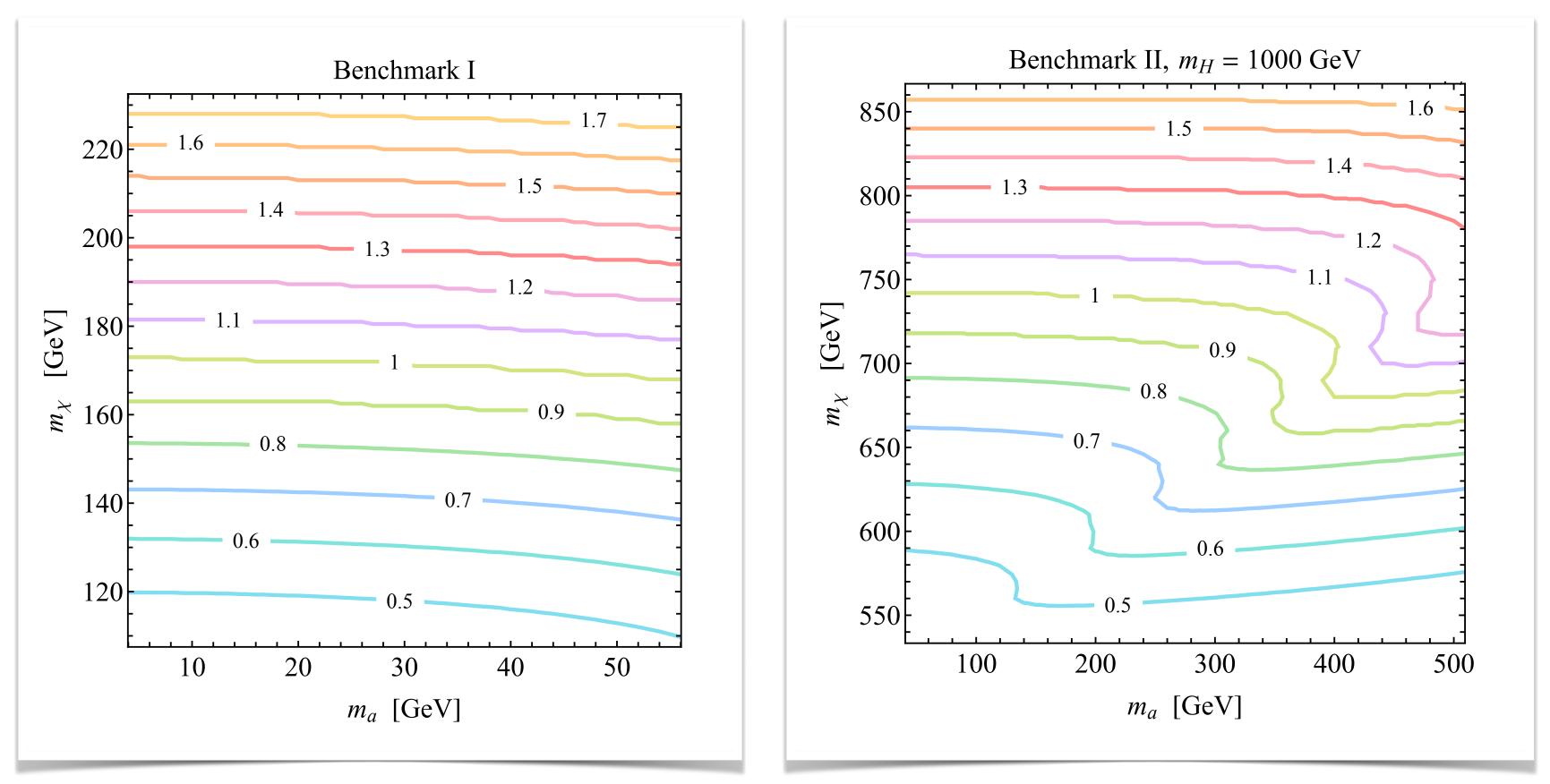
2.3 Relic density

Sources: <u>ArXiv:1505.04190</u> (M. Backovic, A. Martini), <u>ArXiv:2302.02735</u> (U. Haisch, LS).

• Can we get the DM relic density $\Omega h^2 = 0.120(1)$ right?

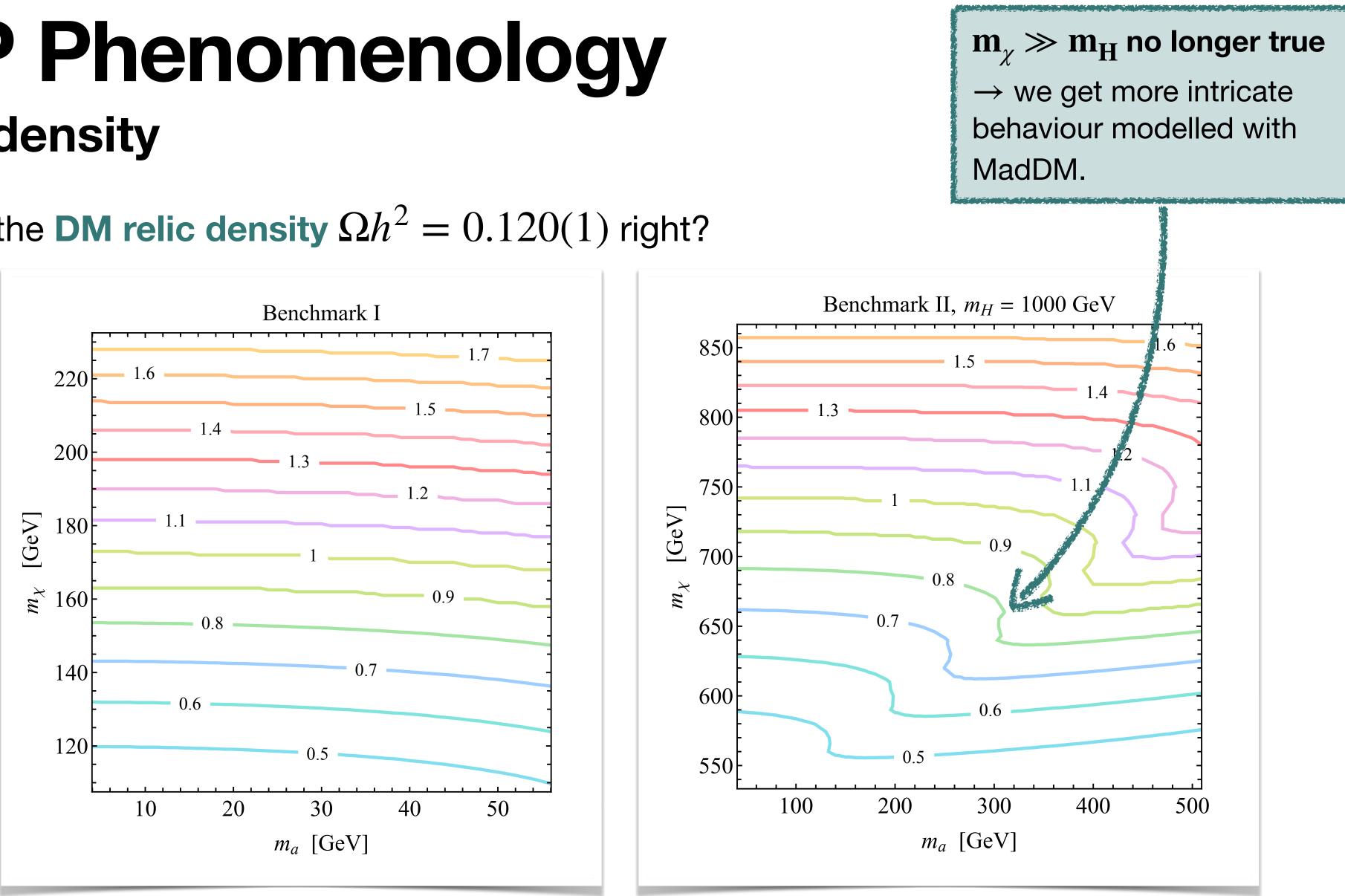
Sources: ArXiv:1505.04190 (M. Backovic, A. Martini), ArXiv:2302.02735 (U. Haisch, LS).

• Can we get the DM relic density $\Omega h^2 = 0.120(1)$ right?

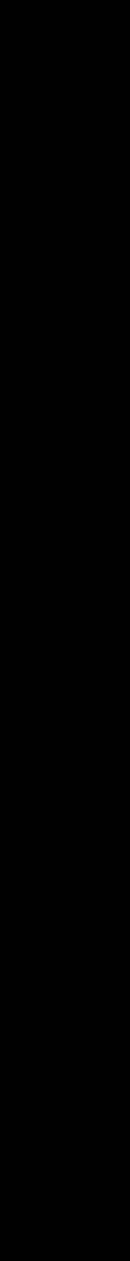


Sources: ArXiv:1505.04190 (M. Backovic, A. Martini), ArXiv:2302.02735 (U. Haisch, LS).

• Can we get the **DM relic density** $\Omega h^2 = 0.120(1)$ right?



Sources: ArXiv:1505.04190 (M. Backovic, A. Martini), ArXiv:2302.02735 (U. Haisch, LS).



• The 2HDM+a model combines an **extended scalar sector** (2HDM) with a UV-complete pseudoscalar DM mediator scenario.

This leads to an interesting collider phenomenology \rightarrow important benchmark.

• The 2HDM+a model combines an **extended scalar sector** (2HDM) with a UV-complete pseudoscalar DM mediator scenario.

This leads to an interesting collider phenomenology \rightarrow important benchmark.

- The additional pseudo-scalar a can become **long-lived** for small mixing angles θ .
 - Interesting LLP signatures that can be probed for at colliders.
 - This scenario is compatible with current relic density measurements.

Thank you for your attention!