

Low-energy flavor probes of light vector bosons

Gabriele Levati Work with Di Luzio, Paradisi, Ponce-Díaz. To appear soon, 2303.XXXXX

University of Padova and INFN

7th of March, 2023

The Standard Model of particle physics

- The Standard Model (SM) is extremely successful in explaining the behaviour of the particles we know
- It leaves important open questions unanswered → call for New Physics (NP)!

Light Vector Bosons

Light Vector Bosons (VBs) have received a lot of attention as **weakly coupled NP** candidates (see, e.g., [Essig *et al.*,'13] or [Bjorken, Essig, Schuster, Toro,'09] and references therein)

Light Vector Bosons

Light Vector Bosons (VBs) have received a lot of attention as **weakly coupled NP** candidates (see, e.g., [Essig *et al.*,'13] or [Bjorken, Essig, Schuster, Toro,'09] and references therein)

Example

The **Dark Photon**, with three parameters ε , $m_{A'}$, BR ($A' \rightarrow inv$.)

Light Vector Bosons

Light Vector Bosons (VBs) have received a lot of attention as **weakly coupled NP** candidates (see, e.g., [Essig *et al.*,'13] or [Bjorken, Essig, Schuster, Toro,'09] and references therein)

Example

The **Dark Photon**, with three parameters ε , $m_{A'}$, BR ($A' \rightarrow inv$.)

Key Point: Longitudinal component

By the equivalence theorem, if the VBs have a longitudinal component \rightarrow Energy-enhanced processes $\propto E^2/m_{\chi}^2$.

e.g. $\Gamma(t
ightarrow b + W) \propto m_t imes (m_t^2/m_W^2)$ in the SM, with $E = m_t$

[Dror, Lasenby, Pospelov,'17]

Light Vector Bosons searches

Searches for generic vector bosons (X) have been obtained by recasting dark photon (A') analyses using DARKCAST ([Ilten, Soreq, Williams, Xue, '18] and [Baruch, Ilten, Soreq, Williams, '22])

Recasting equation

 $\sigma_{X} \operatorname{BR} (X \to \mathfrak{F}) \epsilon (\tau_{X}) = \sigma_{A'} \operatorname{BR} (A' \to \mathfrak{F}) \epsilon (\tau_{A'})$

$K^{\pm} ightarrow \pi^{\pm} + X$ in χPT

We considered the flavour-violating channel $K^{\pm} \rightarrow \pi^{\pm} + X$ to probe generic light VBs ([Di Luzio, Levati, Paradisi, Ponce Díaz, '23]).

Light vector bosons interaction Lagrangian

$$\mathcal{L}_{X} = g_{x} X_{\mu} \sum_{f} \bar{f} \gamma^{\mu} \big(x_{V}^{f} + x_{A}^{f} \gamma_{5} \big) f$$

We computed the full tree-level contributions to the decay rate of $K^{\pm} \rightarrow \pi^{\pm} + X$ in **Chiral Perturbation theory** (χ PT)

 $\chi {\rm PT}$ is an effective field theory describing strong interactions at low energies (see, e.g. [Pich,'95]).

• Symmetries: $G^{0}_{QCD} \supset SU(3)_{L} \times SU(3)_{R} \longrightarrow SU(3)_{V}$

 χ PT is an effective field theory describing strong interactions at low energies (see, e.g. [Pich,'95]).

- Symmetries: $G^{0}_{QCD} \supset SU(3)_{L} \times SU(3)_{R} \longrightarrow SU(3)_{V}$
- Degrees of freedom: the mesonic octet $U(x) = \exp i \frac{\lambda_a \pi_a(x)}{f}$. Goldstone bosons emerging from SSB pattern

 $\chi {\rm PT}$ is an effective field theory describing strong interactions at low energies (see, e.g. [Pich,'95]).

- Symmetries: $G^{0}_{QCD} \supset SU(3)_{L} \times SU(3)_{R} \longrightarrow SU(3)_{V}$
- Degrees of freedom: the mesonic octet $U(x) = \exp i \frac{\lambda_a \pi_a(x)}{f}$. Goldstone bosons emerging from SSB pattern
- Expansion parameter: $\frac{p}{\Lambda_{\chi PT}}$

 $\chi {\rm PT}$ is an effective field theory describing strong interactions at low energies (see, e.g. [Pich,'95]).

- Symmetries: $G^0_{QCD} \supset SU(3)_L \times SU(3)_R \longrightarrow SU(3)_V$
- Degrees of freedom: the mesonic octet $U(x) = \exp i \frac{\lambda_a \pi_a(x)}{f}$. Goldstone bosons emerging from SSB pattern

• Expansion parameter:
$$\frac{p}{\Lambda_{\chi PT}}$$

Leading order chiral lagrangian

$$\mathcal{L}_{\text{QCD}}^{0} = -\frac{1}{4} G_{\mu\nu}^{a} G_{a}^{\mu\nu} + i\gamma^{\mu} (\bar{q}_{L} D_{\mu} q_{L} + \bar{q}_{R} D_{\mu} q_{R})$$
$$\mathcal{L}_{\chi\text{PT}}^{0(p^{2})} = \frac{f^{2}}{4} \text{Tr}(\partial^{\mu} U^{\dagger} \partial_{\mu} U) \qquad \text{with } q^{T} = (u, d, s)$$

External gauge and scalar **fields** enter as sources in \mathcal{L}_{QCD} :

$$\mathcal{L}_{\mathsf{QCD}} = \mathcal{L}_{\mathsf{QCD}}^0 + ar{q} \gamma^\mu (2r_\mu P_R + 2\ell_\mu P_L)q - ar{q}(s - i\gamma_5 p)q$$

External gauge and scalar **fields** enter as sources in \mathcal{L}_{QCD} :

$$\mathcal{L}_{\mathsf{QCD}} = \mathcal{L}_{\mathsf{QCD}}^0 + ar{q} \gamma^\mu (2r_\mu P_R + 2\ell_\mu P_L)q - ar{q}(s - i\gamma_5 p)q$$

Dirac bilinears arise from **functional derivatives** of $S_{\chi PT}$:

$$ar{q}^{j}_{L/R}\gamma^{\mu}q^{i}_{L/R}
ightarrow rac{\delta S_{\chi \mathrm{PT}}}{\delta(\ell/r)^{ji}_{\mu}} \quad \mathrm{and} \quad ar{q}^{j}_{L/R}q^{i}_{R/L}
ightarrow -rac{\delta S_{\chi \mathrm{PT}}}{\delta(s\mp ip)_{ji}}$$

External gauge and scalar fields enter as sources in \mathcal{L}_{QCD} :

$$\mathcal{L}_{\mathsf{QCD}} = \mathcal{L}_{\mathsf{QCD}}^0 + ar{q} \gamma^\mu (2r_\mu P_R + 2\ell_\mu P_L)q - ar{q}(s - i\gamma_5 p)q$$

Dirac bilinears arise from **functional derivatives** of $S_{\chi PT}$:

$$ar{q}^{j}_{L/R}\gamma^{\mu}q^{i}_{L/R}
ightarrow rac{\delta S_{\chi \mathrm{PT}}}{\delta(\ell/r)^{ji}_{\mu}} \quad \mathrm{and} \quad ar{q}^{j}_{L/R}q^{i}_{R/L}
ightarrow -rac{\delta S_{\chi \mathrm{PT}}}{\delta(s\mp ip)_{ji}}$$

where, at order $\mathbb{O}(p^2),~S_{\chi \rm PT}$ reads:

$$S_{\chi PT} = \int d^4 x \, \frac{f^2}{4} \operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U + U^{\dagger} \chi + \chi^{\dagger} U \right]$$
$$D_{\mu} U = \partial_{\mu} U + i U \ell_{\mu} - i r_{\mu} U, \qquad \chi = 2B_0 (s + ip)$$

Weak interactions in the Chiral Lagrangian

The most general effective $\Delta S = 1$ Lagrangian reads:

 $\Delta S = 1$ weak chiral Lagrangian

$$\mathcal{L}_{\text{eff}}^{\Delta S=1} = -\frac{G_{f}f^{4}}{\sqrt{2}} V_{ud} V_{us}^{*} \left\{ g_{27} \left(L_{\mu,2}^{3} L_{1}^{\mu,1} + \frac{2}{3} L_{\mu,2}^{1} L_{1}^{\mu,3} - \frac{1}{3} L_{\mu,2}^{3} Tr(L^{\mu}) \right) + g_{8}^{s} L_{\mu,2}^{3} Tr(L^{\mu}) + g_{8} \left(\text{Tr} \left[\lambda L_{\mu} L^{\mu} \right] + e^{2} g_{\text{ew}} f^{2} \text{Tr} \left[\lambda U^{\dagger} Q U \right] \right) \right\}$$

where $L_{\mu} = iU^{\dagger}D_{\mu}U$ is the left-handed chiral current and $\lambda = \frac{1}{2}(\lambda_6 - i\lambda_7)$.

Weak interactions in the Chiral Lagrangian

The most general effective $\Delta S = 1$ Lagrangian reads:

$\Delta S = 1$ weak chiral Lagrangian

$$\begin{split} \mathcal{L}_{\text{eff}}^{\Delta S=1} &= -\frac{G_{f}f^{4}}{\sqrt{2}} V_{ud} V_{us}^{*} \left\{ g_{27} \left(L_{\mu,\,2}^{3} L_{1}^{\mu,\,1} + \frac{2}{3} L_{\mu,\,2}^{1} L_{1}^{\mu,\,3} - \frac{1}{3} L_{\mu,\,2}^{3} \operatorname{Tr}(L^{\mu}) \right) \\ &+ g_{8}^{5} L_{\mu,\,2}^{3} \operatorname{Tr}(L^{\mu}) + g_{8} \left(\operatorname{Tr} \left[\lambda L_{\mu} L^{\mu} \right] + e^{2} g_{\text{ew}} f^{2} \operatorname{Tr} \left[\lambda U^{\dagger} Q U \right] \right) \right\} \end{split}$$

where $L_{\mu} = iU^{\dagger}D_{\mu}U$ is the left-handed chiral current and $\lambda = \frac{1}{2}(\lambda_6 - i\lambda_7)$.

Together with the LO Chiral Lagrangian this gives us all the vertices we need to compute the transition amplitude!

The decay rate of $K^{\pm} \rightarrow \pi^{\pm} X$

There are three diagrams contributing:

The decay rate of $K^{\pm} \rightarrow \pi^{\pm} X$

There are three diagrams contributing:

In the flavor universal case $(x_V^f, x_A^f \propto 1)$ we obtain:

$$\frac{\Gamma}{m_{\mathcal{K}}} \simeq \frac{G_f^2 f^4}{8\pi} \left(V_{ud} V_{us}^* \right)^2 g_x^2 \frac{m_{\mathcal{K}}^2}{m_{\mathcal{X}}^2} \cdot \\ \cdot \left[g_8 \left(x_{\mathcal{A}}^u + x_{\mathcal{A}}^d \right) + g_8^s \left(x_{\mathcal{A}}^u + 2x_{\mathcal{A}}^d \right) + \frac{4}{3} g_{27} \left(x_{\mathcal{A}}^u - x_{\mathcal{A}}^d \right) \right]^2$$

where $m_K \gg m_X$, $g_8 = 3.07 \pm 0.14$, $g_8^s = -1.16 \pm 0.37$ and $g_{27} = 0.29 \pm 0.02$.

Figure: Constraints in the plane $g_x - m_X$ for the 2-Higgs-doublet model in [Baruch, Ilten, Soreq, Williams, '22]. The gray exclusion band arises from our study imposing the experimental bounds on $K^{\pm} \rightarrow \pi^{\pm} + X$.

Some comments on our result

 One-loop contributions [Dror,Lasenby,Pospelov,'17] can dominate over tree-level ones. However, tree-level effects do not depend on the UV completion details

Some comments on our result

- One-loop contributions [Dror,Lasenby,Pospelov,'17] can dominate over tree-level ones. However, tree-level effects do not depend on the UV completion details
- Flavor non-universal couplings $(x_V^f, x_A^f \not\propto 1)$ imply larger tree-level **FCNC effects** than in the flavor-universal case

Some comments on our result

- One-loop contributions [Dror,Lasenby,Pospelov,'17] can dominate over tree-level ones. However, tree-level effects do not depend on the UV completion details
- Flavor non-universal couplings $(x_V^f, x_A^f \not\propto 1)$ imply larger tree-level FCNC effects than in the flavor-universal case
- Access to the vectorial couplings in a flavor-universal case can be obtained by looking at NLO effects in χPT.

Summary

- We constructed the chiral EFT Lagrangian for ΔS = 1 processes in the presence of new light vector bosons.
- K[±] → π[±] + X provides the most stringent bounds to the axial couplings of new light vector bosons (for m_X < m_K).
- Our (tree-level) results are model-independent, i.e. they do not rely on any specific UV completion.

Summary

- We constructed the chiral EFT Lagrangian for $\Delta S = 1$ processes in the presence of new light vector bosons.
- K[±] → π[±] + X provides the most stringent bounds to the axial couplings of new light vector bosons (for m_X < m_K).
- Our (tree-level) results are model-independent, i.e. they do not rely on any specific UV completion.

Thanks for your attention!

Backup Material

Tree-level results

	x_e^V	x_{ν}^{V}	$x_{u,c,t}^V$	$x_{d,s,b}^V$	x_e^A	x_{ν}^{A}	$x_{u,c,t}^A$	$x^A_{d,s,b}$
Axial	0	1/4	0	0	-1	-1/4	1	-1
Chiral	-1	0	1	1	-1	0	1	-1
2HDM	0.044	0.05	1.021	0.015	-0.1	0.05	-0.95	-0.1

One-Loop-level results

	x_e^V	x_{ν}^{V}	$x_{u,c,t}^V$	$x_{d,s,b}^V$	x_e^A	x_{ν}^{A}	$x_{u,c,t}^A$	$x^A_{d,s,b}$
Axial	0	1/4	0	0	-1	-1/4	1	-1
Chiral	-1	0	1	1	-1	0	1	-1
2HDM	0.044	0.05	1.021	0.015	-0.1	0.05	-0.95	-0.1

Comparison between tree- and loop-level: 2HDM

		x_e^V	x_{ν}^{V}	$x_{u,c,t}^V$	$x_{d,s,b}^V$	x_e^A	x_{ν}^{A}	$x_{u,c,t}^A$	$x^A_{d,s,b}$
Λ	Axial	0	1/4	0	0	-1	-1/4	1	-1
C	hiral	-1	0	1	1	-1	0	1	-1
21	HDM	0.044	0.05	1.021	0.015	-0.1	0.05	-0.95	-0.1

Comparison between tree- and loop-level: Axial

	x_e^V	x_{ν}^{V}	$x_{u,c,t}^V$	$x_{d,s,b}^V$	x_e^A	x_{ν}^{A}	$x_{u,c,t}^A$	$x^A_{d,s,b}$
Axial	0	1/4	0	0	-1	-1/4	1	-1
Chiral	-1	0	1	1	-1	0	1	-1
2HDM	0.044	0.05	1.021	0.015	-0.1	0.05	-0.95	-0.1

Comparison between tree- and loop-level: Chiral

	x_e^V	x_{ν}^{V}	$x_{u,c,t}^V$	$x_{d,s,b}^V$	x_e^A	x_{ν}^{A}	$x_{u,c,t}^A$	$x^A_{d,s,b}$
Axial	0	1/4	0	0	-1	-1/4	1	-1
Chiral	-1	0	1	1	-1	0	1	-1
2HDM	0.044	0.05	1.021	0.015	-0.1	0.05	-0.95	-0.1

On the relative strength of contributions

19

Universal vs non-universal case

Flavor universal case ($G = -\frac{G_f}{\sqrt{2}} V_{ud} V_{us}^*$):

$$\begin{split} |\bar{\mathfrak{M}}|^{2} &= 4G^{2}f^{4} g_{x}^{2} \left[g_{8} \left(x_{A}^{u} + x_{A}^{d} \right) + g_{8}^{s} \left(x_{A}^{u} + 2x_{A}^{d} \right) + \frac{4}{3}g_{27} \left(x_{A}^{u} - x_{A}^{d} \right) \right]^{2} \\ & \left[\left(\frac{m_{K}^{2} - m_{\pi}^{2}}{m_{X}} \right)^{2} + m_{X}^{2} - 2(m_{K}^{2} + m_{\pi}^{2}) \right] \end{split}$$

Flavor non-universal case :

$$\begin{split} |\widetilde{\mathcal{M}}|^{2} &= \frac{g_{x}^{2}}{m_{X}^{2} \left(m_{K}^{2} - m_{\pi}^{2}\right)^{2}} [(m_{K} - m_{\pi})^{2} - m_{X}^{2}] [(m_{K} + m_{\pi})^{2} - m_{X}^{2}] \\ & \left[\frac{x_{sd}^{\text{eff}}}{2} (m_{K}^{2} - m_{\pi}^{2}) + 2g_{ew}^{2} f^{4} G_{g_{8}}(x_{V}^{s} - x_{V}^{d}) + f^{2} G \left(g_{8}^{s} (m_{K}^{2} - m_{\pi}^{2})(x_{A}^{u} + x_{A}^{d} + x_{A}^{s}) \right. \\ & \left. + \frac{2}{3} g_{27} m_{K}^{2} (2x_{A}^{d} - x_{V}^{d} + 2x_{A}^{s} + x_{V}^{s} - 4x_{A}^{u}) + g_{8} m_{\pi}^{2} (x_{A}^{d} - x_{V}^{d} + x_{A}^{s} + x_{V}^{s} + 2x_{A}^{u}) \\ & \left. - \frac{2}{3} g_{27} m_{\pi}^{2} (2x_{A}^{d} + x_{V}^{d} + 2x_{A}^{s} - x_{V}^{s} - 4x_{A}^{u}) - g_{8} m_{K}^{2} (x_{A}^{d} + x_{V}^{d} + x_{A}^{s} - x_{V}^{s} + 2x_{A}^{u}) \right) \right]^{2} \end{split}$$

