

Search for DM particles produced in association with a dark Higgs boson decaying to two W bosons

LaThuile2023: XXXVI Rencontres de Physique de la Vallée d'Aoste

Work supported by DOE Award: DE-SC0010103

Pedro J. Fernández Manteca

Rice University

5th - 11th March 2023

Motivation

- Search for DM using the dark Higgs simplified model as benchmark
- Emission of a dark Higgs boson, *S*, that mixes with the SM boson and would provide mass to the DM (WIMPs) particles
 - S can decay into SM states → can be searched at the LHC.
 - Mass scan [m*S*, mZ', m*X*]. Fixed couplings
- Since *S* can be lighter than DM particles, it **could relax the DM relic abundance** constraints by introducing a new annihilation channel $\chi\chi \rightarrow SS$
- WW decay mode dominates the dominates the picture for m*S* ≥ 160 GeV (resonance). Ongoing CMS bb analysis is exploring the low mass region m*S* < 160 GeV
- Analyzed full Run2 CMS data (2016, 2017, 2018 data periods). Semi- and di-leptonic W⁺W final states have been studied

Event selection: dileptonic

• The analysis targets the dileptonic + semileptonic decay of the W⁺W⁻ boson pair

Event selection: semileptonic

• The analysis targets the dileptonic + semileptonic decay of the W⁺W⁻ boson pair

Background estimation overview

• Dileptonic:

- **Non-prompt** leptons: estimated with a fully data-driven method, and validated in same-signed validation region
- **Top-quark:** the normalization is measured using toptagged events in data control region
- Non-resonant WW: the normalization is measured using events with large angular distance between the two leptons in data control region
- Z/γ * → τ⁺τ⁻: the normalization is measured using low mT(ℓℓ+MET) events in data control region

• Semileptonic:

- Non-prompt: same strategy as for dileptonic
- Top-quark: same strategy as for dileptonic
- W+Jets: the normalization is measured using events with mjj side band in data control region
- All other (small) processes are estimated directly from simulation: HWW, VY/VY*, VZ, VVV

Orthogonal selection:
Same lepton charges
Number of b-tagged jets > 0
∆R(ℓℓ) > 2.5
m⊤(ℓℓ+MET) < 50 GeV
mT(I + MET) < 30 GeV && MET < 30 GeV
Number of b-tagged jets > 0
m <i>iji</i> <65 or m <i>iji</i> > 105 GeV
(keeping the other preselection requirements

in each case)

Analysis strategy: dileptonic

- **Dileptonic signal extraction:** 3D ML fit to $\Delta R(\mathcal{U}) m\mathcal{U} mT(\mathcal{U}min + p_T^{mis})$
- More sensitive to the dark Higgs signal prediction than other quantities based on lepton kinematics and/or $p_{\rm T}$
- Optimized procedure: strong kinematic dependence on m_s
 - Three signal regions are defined in ∆R(𝔅), based on the S/sqrt(S+B) curves vs ∆R(𝔅) for each dark Higgs mass
 - SR1: ΔR(𝔄) < 1.0, SR2: 1.0 < ΔR(𝔄) < 1.5, SR3: 1.5 < ΔR(𝔄) < 2.5

- For each SR, a 2D template of mll mT(lmin + p_T^{mis}) is defined:
 - The mll binning is set from significance S/sqrt(S+B) curves vs mll for each dark Higgs mass
 - The mT(*l*min + pTmiss) binning is set by squeezing the sensitivity for each data period
- Allow the different signal mass points to freely populate the 3D phase space while using the same background modeling procedure

Results: dileptonic

- The signal strength is extracted by fitting the predicted yields to the observed events
- ML fit: 3 Signal Regions, 1 Top Control Region, 1 DY Control Region, 1 WW Control Region for each data period
 - Signal regions information entering in the fit: 2D histograms of m ℓ mT(ℓ min + p_T^{mis}) from SR1, SR2 and SR3
 - Control regions information entering in the fit: 1-bin distributions. Top, WW, and DY normalization freely float within the global fit

• No significant excess over the SM prediction

2016 . mll: [12,60,90,120,inf]	, mT(/ min +	pT ^{mis}): [0,50,90,130,160,inf]
2017 . mll: [12,60,90,120,inf]	, mT(<i>l</i> min +	p _T ^{mis}): [0,50,90,130,170,inf]
2018 . mll: [12,60,90,120,inf]	, mT(/ min +	p _T ^{mis}): [0,50,90,130,180,inf]

Analysis strategy: semileptonic

- Semileptonic signal extraction: fit to the shape of BDT output score
- BDT trained with set of variables that showed most separation power between signal and background, based on final state objects (lepton, 2 jets, MET)

Variable	Definition
$p_{\mathrm{T}}^{\mathrm{jj}}$	$p_{\rm T}$ of the vectorial sum of the W candidate jets
$p_{\mathrm{T}}^{\ell \mathrm{j} \mathrm{j}}$	$p_{\rm T}$ of the vectorial sum of the visible particles
$p_{\mathrm{T}}^{\mathrm{miss}}$	Size of the missing transverse momentum vector
$\Delta \eta_{\ell,ij}$ and $\Delta \phi_{\ell,ij}$	$\Delta \eta$ and $\Delta \phi$ between the lepton and the di-jet system
$\Delta \eta_{i,i}$ and $\Delta \phi_{i,i}$	$\Delta \eta$ and $\Delta \phi$ between the W candidate jets
$\Delta \eta_{\ell, p_{\mathrm{T}}^{\mathrm{miss}}}$ and $\Delta \phi_{\ell, p_{\mathrm{T}}^{\mathrm{miss}}}$	$\Delta \eta$ and $\Delta \phi$ between the lepton and $\vec{p}_{\rm T}^{\rm miss}$
$\Delta \phi_{\ell \mathrm{j}\mathrm{j},p_\mathrm{T}^\mathrm{miss}}$	$\Delta \phi$ between the vectorial sum of the visible particles and $ec{p}_{ ext{T}}^{ ext{miss}}$
$min(p_{\mathrm{T}}^{\ell},p_{\mathrm{T}}^{\mathrm{j}_{2}})/p_{\mathrm{T}}^{\mathrm{miss}}$	Minimum of the lepton $p_{\rm T}$ and the trailing jet $p_{\rm T}$, divided by $p_{\rm T}^{\rm miss}$
$max(p_{\rm T}^{\ell}, p_{\rm T}^{\rm J_2})/p_{\rm T}^{\rm miss}$	Maximum of the lepton $p_{\rm T}$ and the leading jet $p_{\rm T}$, divided by $p_{\rm T}^{\rm miss}$
$max(p_{\rm T}^{\ell}, p_{\rm T}^{\rm j_1})/m_{\ell \rm jj p_{\rm T}^{\rm miss}}$	Maximum of the lepton $p_{\rm T}$ and the leading jet $p_{\rm T}$, divided by
	the invariant mass of the vectorial sum of the visible particles and the $p_{\mathrm{T}}^{\mathrm{miss}}$
	where the missing energy is considered to be massless

• Binning optimized based on S/sqrt(S+B) curves for the three data periods

Results: semileptonic

- ML fit: 1 Signal Regions, 1 Top Control Regions, 1 DY Control Region, 1 WW Control Region for each data period
 - Signal regions information entering in the fit: 1D histograms of BDT output score
 - Control regions information entering in the fit: 1-bin distributions. Top and W+Jets normalization freely float within the global fit

• Finer binning in 2017-2018 to squeeze the sensitivity

Results: combination

• Dominant $S \rightarrow \chi \chi$ decay mode (invisible) for m $S \ge 2m\chi$

W

Z'

 W^+

 Observed limit is better than the expected due to slight data deficit in some of the sensitive bins

Summary

- A search for dark matter particles produced in association with a dark Higgs boson has been presented, using the full Run2 CMS dataset
 - First measurement at CMS.
 - The decay modes of the dark Higgs boson to WW→2ℓ,2nu and WW→1ℓ,1nu,2j have been explored
 - No significant deviation from the Standard Model predictions is observed. Upper limits are set on the dark Higgs model parameters
 - Comparable sensitivity with latest ATLAS result (talk by A. García-Bellido on Friday)