The Most Precise $\sigma_{t\bar{t}}$ Measurement in the Lepton+Jets Channel with the ATLAS Detector arXiv:2207.01354 La Thuile 2023

Sahibjeet $Singh^1$ on behalf of the ATLAS collaboration

¹University of Toronto

March 9, 2023

Motivation	Analysis Overview	Results	Conclusions
00	00000	00	O
Outline			

Motivation	Analysis Overview	Results	Conclusions
●0	00000	00	0
Motivation			

- 257 pb $^{-1}$ of data collected by ATLAS in 2017 with $\sqrt{s} = 5.02$ TeV
- Allows for a measurement of $\sigma_{t\bar{t}}$ in a pileup free environment
- Gluon PDF at high Bjorken x sensitive to $\sigma_{t\bar{t}}$ measured at low \sqrt{s}
- CMS measured $\sigma_{t\bar{t}}$ in the dilepton and single-lepton channels arXiv:2112.09114
 - $\sigma_{t\bar{t}} = 62.6 \pm 4.1 (\text{stat.}) \pm 3.0 (\text{syst.} + \text{lumi.}) \text{ pb} (\pm 7.9\%)$
 - NNLO+NNLL prediction: 68.2 pb

Motivation	Analysis Overview	Results	Conclusions
00			
The ATLAS	Detector		

• General purpose detector used to probe SM and BSM physics

Motivation	Analysis Overview	Results	Conclusions
00	•0000	00	O
Analysis St	rategy		

- Measure $\sigma_{t\bar{t}}$ in single-lepton and dilepton channels separately then combine
- Dilepton channel:
 - Excellent purity but low statistics
 - Cut-and-count method used to measure $\sigma_{t\bar{t}}$ in both SF and OF dilepton events
- Single-lepton channel:
 - Higher statistics but lower purity
 - A Boosted Decision Tree (BDT) trained to separate signal and background
 - Binned profile-likelihood fit of BDT output used to extract $\sigma_{t\bar{t}}$
- Results combined using the Convino tool
 - arXiv:1706.01681

Motivation	Analysis Overview	Results	Conclusions
00	00000	00	O
Dilepton Ch	nannel		

• Double tagging formalism used for both SF and OF events for the first time!

$$\begin{split} N_{1,m}^{\ell\ell} &= L\sigma_{i\bar{i}} \epsilon_{\ell\ell} 2\epsilon_b^{\ell\ell} (1 - C_b^{\ell\ell} \epsilon_b^{\ell\ell}) f_{1,m}^{\ell\ell,i\bar{i}} &+ \sum_{k=\mathrm{bkg}} s_1^k f_{1,m}^{\ell\ell,k} \\ N_{2,m}^{\ell\ell} &= L\sigma_{i\bar{i}} \epsilon_{\ell\ell} C_b^{\ell\ell} (\epsilon_b^{\ell\ell})^2 f_{2,m}^{\ell\ell,i\bar{i}} &+ \sum_{k=\mathrm{bkg}} s_2^k f_{2,m}^{\ell\ell,k} \end{split}$$

- Single lepton trigger, 2 OS leptons with $p_{\mathsf{T}} > 18 \text{ GeV}$
- Jet $p_{\mathsf{T}} > 25$ GeV with 1 or 2 b-tags
- Cuts on m_{II} and E_{T}^{miss}
- Measure $\sigma_{t\bar{t}}, \epsilon_b^{\prime\prime}, S_1^Z$, and S_2^Z

Motivation 00	Analysis Overview oo●oo	Results 00	Conclusions O
Single-lepton Cha	annel		

- Exactly one electron or muon candidate
- $\bullet~{\rm Lepton}~{\rm p_T}>25~{\rm GeV}$ and $|\eta|<2.5$
- ≥ 2 jets with ${\sf p}_{\sf T}>$ 20 GeV and $|\eta|<$ 2.5
- Events classified into 6 regions based on number of jets and b-tagged jets
- Cuts on MET and m^W_T applied to reduce mis-identified lepton background

REGION NAME	JET MULTIPL	ICITY <i>b</i> -jet	MULTIPLICITY
ℓ +2j \geq 1b	2		≥ 1
ℓ+3j 1b	3		1
ℓ+3j 2b	3		2
ℓ+≥4j 1b	≥ 4		1
ℓ+4j 2b	4		2
ℓ+≥5j 2b	≥ 5		2
	s	· · ·	>2i>1h
щ vs=5.0	2 TeV, 257 pb ⁻¹	Pr	e-Fit
3000			Data 2017
2500		Ċ]tī
		_	Single top
2000			Other bkg.
1500			Mis-ID lepton
4000		11	Oncertainty
1000			1
500	\$55	***** *	-

9 1.25		· · · · · · · · ·	
1	hillin han han han han han han han han han ha		77 7 777
1 0.75			
2	3 4	5 6	7 ≥8
			Number of jets

Motivation	Analysis Overview	Results	Conclusions
	00000		
BDT	Distributions		

 Good agreement between prediction and data in the BDT distributions for the 6 regions - arXiv:2207.01354

Motivation	Analysis Overview	Results	Conclusions
00	0000●	00	O
Combination			

• Convino tool used to combine Dilepton and single-lepton results - arXiv:1706.01681

• Minimize
$$\chi^2 = \chi^2_S + \chi^2_U + \chi^2_P$$

- χ^2_S : The statistical uncertainty of each measurement
- χ^2_U : The correlations between systematic uncertainties and any constraints from data
- χ^2_P : Gaussian penalty term for systematic uncertainties and encodes prior information on correlations between systematic uncertainties

Motivation	Analysis Overview	Results	Conclusions
00	00000	●0	O
Results			

• SL: 68.2 \pm 0.9(stat.) \pm 2.9(syst.) \pm 1.1(lumi.) \pm 0.2(beam) pb

• DL: $65.7 \pm 4.5(\text{stat.}) \pm 1.6(\text{syst.}) \pm 1.2(\text{lumi.}) \pm 0.2(\text{beam})$ pb

- Comb: $67.5 \pm 0.9(\text{stat.}) \pm 2.3(\text{syst.}) \pm 1.1(\text{lumi.}) \pm 0.2(\text{beam}) \text{ pb}$ arXiv:2207.01354
- Predicted $\sigma_{t\bar{t}} = 68.2 \text{ pb}$
- 4.5% σ_{tt̄} uncertainty is the most precise single-lepton measurement by ATLAS at any energy!
- 3.9% overall uncertainty after combination

Category		$\delta \sigma_{l\bar{l}}$ [%]	
	Dilepton	Single lepton	Combination
tī generator [†]	1.2	1.0	0.8
tī parton-shower/hadronisation*.*	0.3	0.9	0.7
$t\bar{t}$ h_{damp} and scale variations [†]	1.0	1.1	0.8
tī parton distribution functions [†]	0.2	0.2	0.2
Single-top background	1.1	0.8	0.6
W/Z + jets background*	0.8	2.4	1.8
Diboson background	0.3	0.1	< 0.1
Misidentified leptons*	0.7	0.3	0.3
Electron identification/isolation	0.8	1.2	0.8
Electron energy scale/resolution	0.1	0.1	< 0.1
Muon identification/isolation	0.6	0.2	0.3
Muon momentum scale/resolution	0.1	0.1	0.1
Lepton-trigger efficiency	0.2	0.9	0.7
Jet-energy scale/resolution	0.1	1.1	0.8
$\sqrt{s} = 5.02 \text{ TeV}$ JES correction	0.1	0.6	0.5
Jet-vertex tagging	< 0.1	0.2	0.2
Flavour tagging	0.1	1.1	0.8
E ^{miss} _T	0.1	0.4	0.3
Simulation statistical uncertainty*	0.2	0.6	0.5
Data statistical uncertainty*	6.8	1.3	1.3
Total systematic uncertainty	3.1	4.2	3.7
Integrated luminosity	1.8	1.6	1.6
Beam energy	0.3	0.3	0.3
Total uncertainty	7.5	4.5	3.9

- Effect of combined $\sigma_{t\bar{t}}$ at $\sqrt{s} = 5.02$ TeV on the new ATLASpdf21 measured using xFitter tool
- Including $\sigma_{t\bar{t}}$ results in slight enhancement of gluon PDF for x > 0.1

Motivation	Analysis Overview	Results	Conclusions
00	00000	00	•
Conclusions			

- The most precise $\sigma_{t\bar{t}}$ measurement in the single-lepton channel by ATLAS is now the $\sqrt{s} = 5.02$ TeV measurement!
- The single $\sigma_{t\bar{t}}$ at $\sqrt{s} = 5.02$ TeV has a visible effect on the gluon PDF at high x when added to ATLASpdf21!
- Special runs like the $\sqrt{s} = 5$ TeV campaign are a largely untapped pool of interesting physics
- Unique challenges with such runs but also unique opportunities!

Backup

Double-tagging Formalism

• Use double-tagging formalism for OF events

$$\begin{split} N_{1,m}^{\ell\ell} &= L\sigma_{t\bar{t}} \,\epsilon_{\ell\ell} \, 2\epsilon_b^{\ell\ell} (1 - C_b^{\ell\ell} \epsilon_b^{\ell\ell}) \, f_{1,m}^{\ell\ell,t\bar{t}} \,\, + \,\, \sum_{\substack{k = bkg \\ k = bkg}} s_1^k \, f_{1,m}^{\ell\ell,k}, \\ N_{2,m}^{\ell\ell} &= L\sigma_{t\bar{t}} \,\epsilon_{\ell\ell} \, C_b^{\ell\ell} (\epsilon_b^{\ell\ell})^2 \, f_{2,m}^{\ell\ell,t\bar{t}} \,\, + \,\, \sum_{\substack{k = bkg \\ k = bkg}} s_2^k \, f_{2,m}^{\ell\ell,k} \end{split}$$

- $N_1(N_2)$: Number of events with 1 (2) b-tags
- L: Luminosity
- $\epsilon_{e\mu}$: The efficiency for an event to pass the $e\mu$ selection
- ϵ_b : Probablity for a jet to be reconstructed and pass the b-tagging criteria
- C_b : b-tagging correlation coefficient
- s^k: Scale factors for backgrounds (k)
 - $s^k = 1$ for all backgrounds except Z+jets
 - k = Wt, diboson, Z+jets and fake leptons