

Boosted ggH \rightarrow cc @CMS

YSF: Search for boosted Higgs boson decays to charm quark pairs

European Research Council Established by the European Commission

Andrzej Novak on behalf of the CMS Collaboration

7 March 2023, La Thuile

Motivation

Complete description of the Higgs boson

- Observed couplings (~90% of BR)
 - Vector bosons (WW, ZZ)
 - 3^{rd} generation fermions (ttH, bb, $\tau\tau$)
- Evidence for 2nd generation couplings
 - $H \rightarrow \mu\mu$

Next target – search for $H \rightarrow cc$

- Largest missing fraction of BR
- Establishing couplings to 2nd gen. quarks
- Measuring any enhancements to coupling would hint at new physics

CMS-HIG-18-031

Direct Search Channels

General Strategy

Gluon Fusion Production Mode

Jet Identification

Data-driven fit in jet mass

7 March 2023, La Thuile

Analysis In a Nutshell

Simultaneous Fit Event Selection Signal Region Definition Classifier Lepton veto Top veto • $E_T^{miss} < 140$ **Signal Rich** • b-tag veto (pass) cut **Signal Depleted** *Mix of Fat Jet Triggers (fail) AK8 Jet (Higgs Cand.) • m_{SD} , p_T cuts Tet PT • N₂ substructure cut Charm vs. bottom cut Preselection Fit jet soft-drop mass in bins of p_{T} Constrain QCD from data in-situ

Analysis In a Nutshell

Event Selection

Signal Region Definition

Simultaneous Fit

Lepton veto Top veto • $E_T^{miss} < 140$ • b-tag veto *Mix of Fat Jet Triggers AK8 Jet (Higgs Cand.) • m_{SD} , p_T cuts • N_2 substructure cut • Charm vs. bottom cut

7 March 2023, La Thuile

Andrzej Novak

Charm Tagging – DeepDoubleX

Input relevance studies (IG, DeepTaylor)

- ~50% reduction in input features, no loss in perf.
- Much faster inference

10⁻⁴

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 $H \rightarrow c\bar{c}$ tagging efficiency

0.8

0.9

1.0

Charm Tagging – Mass Decorrelation

Independence of the fitted variable on the selection is crucial

• In particular for data-driven background estimation

Train classifiers with flat mass spectrum signal

Analysis In a Nutshell

Event Selection

Signal Region Definition

Simultaneous Fit

Constrain QCD **from data** *in-situ*

Lepton veto

E_T^{miss} < 140
b-tag veto

Top veto

Transfer Factor Fit

Rhalphabet

• Differential Alphabet (ABCD)

Transfer Factor – residual correction

- Accounting for different tagger response
- Flat TF → Regular ABCD method

TF defined (constrained) bin **barycenters**

- 6 pT x 23 ρ (mass) bins
- Surface parametrized in **Bernstein basis**

$$R(\rho, p_T) = \sum_{k=0}^{n_{\rho}} \sum_{\ell=0}^{n_{p_T}} a_{k,\ell} b_{k,n_{\rho}}(\rho) b_{\ell,n_{p_T}}(p_T) \epsilon^{\text{QCD}}(\rho, p_T)$$
$$b_{\nu,n}(x) = \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu} \qquad \rho = \log \frac{p_T^2}{m_{SD}^2}$$

Order of polynomials is arbitrary

• Determine optimal configuration based from goodness of fit (F-test)

Simultaneous Pass and Fail Fit

7 March 2023, La Thuile

Transfer Factor Fit – Optimal Case (ABCD)

7 March 2023, La Thuile

Transfer Factor Fit – Realistic Example

7 March 2023, La Thuile

Transfer Factor Fit – In Practice

2 effects in to parametrize

- Classifier Mass Sculpting (MC only fit)
- Discrepancies due to Data/MC mismodelling

F-Tests to optimize #dof

Method tested against bias

- Spurious "peaky" signal
- Different TF parametrizations

Results – $Z \rightarrow cc$ Observation

7 March 2023, La Thuile

$ggH \rightarrow cc Limit$

Inclusive in H production mode

• ~ 50% ggF, ~30% VBF

μ_{H→cc} < 47 (39) x SM@95%

- Orthogonal to VH \rightarrow cc •
- Higher p_{T} regime

Statistical uncertainties dominant

17

Summary

Full **Run2 ggH →cc Analysis** in a boosted regime, submitted to PRL

- Largely possible due to **DeepDoubleX** tagger
- First time this channel is explored at the LHC

Observation of $Z \rightarrow cc$ validating analysis method

- Significance >> 5σ
- Strongest constraint at the LHC yet
- First measurement in this production mode

Observed (expected) H → cc Limit < 47 (39) x SM expectation

• Entirely orthogonal configuration to previous searches

European Research Council Established by the European Commission

Thank You

This project has received funding from the European Research Council under the European Unions' Horizon 2020 research and innovation programme. [ID: 724704]

ΈR

7 March 2023, La Thuile

Technical Aspects

Implementation is *nearly* ROOT independent

🔊 Parsl

Using Coffea framework with Scikit-HEP Software stack <u>awkward</u> – handling jagged data <u>uproot</u> – ROOT file reading (Fitting still dependent on RooFit/CMS Combine <u>mplhep</u> – plotting

Full Run2 analysis ~ 30TB data+sim, ~3TB branches accessed

DASK

Incl. systematic variations (JES/JER...)

10-20 nodes of 40-120 threads depending on availability

< 40 minutes total runtime (I/O limited) in optimal conditions

Easy scale out

Tagger Calibration

- No existing pure $H \rightarrow cc \text{ or } Z \rightarrow cc \text{ region exists}$
- Use $g \rightarrow cc$ as a proxy (not entirely signal-like)
- Two ways of "forcing" a good proxy compatible results
 - 1. Use soft-muon presence to select Higgs-like cc jets
 - 2. Train a BDT to select Higgs-like cc jets

21

Background Parametrization Alternatives

- Bernstein baseline
 - Previously used, easy to fit
 - Polynomial space

$$R_{\rm p/f}(\rho, p_{\rm T}) = \sum_{k=0}^{n_{\rho}} \sum_{\ell=0}^{n_{p_{\rm T}}} a_{k,\ell} \left[b_{k,n_{\rho}}(\rho) b_{\ell,n_{p_{\rm T}}}(p_{\rm T}) \right]$$

- Chebyshev
 - More sensitive to initial values
 - Polynomial space
 - Replace $b_{k,l}$ terms with $c_{k,l}$
- Exponential transform of Bernstein
 - Less stable
 - Independent parameter space

$$R_{\rm p/f}(\rho, p_{\rm T}) = \sum_{k=0}^{n_{\rho}} \sum_{\ell=0}^{n_{p_{\rm T}}} a_{k,\ell} \exp\left[b_{k,n_{\rho}}(\rho)b_{\ell,n_{p_{\rm T}}}(p_{\rm T})\right]$$

2

-8

Chebyshev

8

	1		
		1	

Bernstein

1

