

Evidence of the off-shell Higgs production and constraints on the total decay width of the Higgs boson in the ZZ → 4l and ZZ → 2l2v decay channels with the ATLAS detector @La Thuile 2023 - Les Rencontres de Physique de la Vallée d'Aoste

05-11 March 2023 <u>Yingjie Wei</u> On behalf of the ATLAS collaboration

off-shell Higgs and $\Gamma_{\!H}$

Introduction

In 2012, both ATLAS and CMS at LHC discovered the Higgs particle.

yingjie.wei@cern.ch

off-shell Higgs and Γ_H

Higgs mass measurement

□ The importance of having a precise Higgs mass:

- Test the consistency of the SM
- Predicted in some BSM
- > (plus top) Stability of the Universe [1, 2]

Run 1+2: 124.94 ± 0.17(stat.) ± 0.03(syst.) GeV

University of Oxford

off-shell Higgs and $\Gamma_{\!H}$

Higgs width measurement

Run 1+2: 124.94 ± 0.17(stat.) ± 0.03(syst.) GeV

University of Oxford

4

off-shell Higgs and Γ_H

yingjie.wei@cern.ch

Higgs width measurement

Run 1+2: 124.94 ± 0.17(stat.) ± 0.03(syst.) GeV

University of Oxford

off-shell Higgs and $\Gamma_{\rm H}$

yingjie.wei@cern.ch

Higgs width measurement

yingjie.wei@cern.ch

off-shell Higgs and $\Gamma_{\!H}$

ggF Signal-background interference

10

□ The existence of the SM off-shell Higgs will reduce the yield due to a large **negative** interference (to preserve <u>unitarity</u>), i.e. Sig+Bkg+intf < Bkg only

University of Oxford

√s = 8 TeV

600

800

 $m_{ZZ}[GeV]$

1000

yingjie.wei@cern.ch

off-shell Higgs and $\Gamma_{\rm H}$

EW signal, background and interference

Non-negligible interference among all the components

-		· ~	
VUDA	110 14/0	I(a)corn	ch
		\mathbf{u}	
J	,		

off-shell Higgs and Γ_{H}

University of Oxford

BSM/EFT analysis of the off-shell Higgs

Off-shell Higgs can be used to probe EFT operators at ~ TeV level.
The degeneracy of Higgs-gluon and Higgs-top can break in the off-shell region.

off-shell Higgs and Γ_{H}

University of Oxford

 m_H

 C_t

 C_{g}

Off-shell

220GeV-2TeV

Event categories

Jets are selected with $p_T > 30$ GeV and $|\eta| < 4.5$

yingjie.wei@cern.ch

off-shell Higgs and $\Gamma_{\!H}$

University of Oxford

Event categories

Jets are selected with $p_T > 30$ GeV and $|\eta| < 4.5$

yingjie.wei@cern.ch

off-shell Higgs and $\Gamma_{\!H}$

$H^* \rightarrow ZZ \rightarrow 4\ell$ channel

$H^* \rightarrow ZZ \rightarrow 4\ell$ channel

□ Final state decay objects (*e* and μ) can be fully reconstructed in the 4ℓ channel

□ Observables: neural network method (inputs: $P_{\rm T}$, η , matrix-element, etc)

□ Background: qqZZ (main), ggZZ

$H^* \rightarrow ZZ \rightarrow 2\ell 2\nu$ channel

- ❑ Six times larger branching ratio (compared with the 4ℓ decay channel)
- □ Signal regions (jet-binned SRs):
 - ➢ ggF, EW (VBF+VH) and Mixed
- □ Observable: transverse mass of ZZ

$$m_{\rm T}^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p_{\rm T}}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

More and complicated backgrounds:
> qqZZ, ggZZ, WZ, tt, WW, Zjets, etc.

$H^* \rightarrow ZZ \rightarrow 2\ell 2\nu$ channel

- ❑ Six times larger branching ratio (compared with the 4ℓ decay channel)
- □ Signal regions (jet-binned SRs):
 - ➢ ggF, EW (VBF+VH) and Mixed
- □ Observable: transverse mass of ZZ

$$m_{\rm T}^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p_{\rm T}}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

More and complicated backgrounds:
> qqZZ, ggZZ, WZ, tt, WW, Zjets, etc.

Systematic uncertainties

□ Large uncertainties for signal ggF and VBF

- ➢ VBF: High-order (HO) QCD
- ➢ ggF: HOQCD and Parton Shower (PS)

Large uncertainties for background

ightarrow qq \rightarrow ZZ: HOQCD, HOEW and PS

Jet energy and resolution uncertainties for both signal and background are large.

ggF: F.Caola et al. JHEP 07 (2016) 087

Off-shell H^{*} \rightarrow **ZZ analysis results**

\Box Evidence of off-shell Higgs: 3.2 σ

yingjie.wei@cern.ch

off-shell Higgs and $\Gamma_{\!H}$

Off-shell H^{*} \rightarrow **ZZ analysis results**

\Box Evidence of off-shell Higgs: 3.2 σ

yingjie.wei@cern.ch

off-shell Higgs and Γ_{H}

University of Oxford

Off-shell $H^* \rightarrow ZZ$ analysis results

□ Total Higgs decay width constraints:

 $\frac{\sigma^{\rm off shell}}{\sigma^{\rm on shell}} \propto \Gamma_{H}$

yingjie.wei@cern.ch

off-shell Higgs and $\Gamma_{\!H}$

University of Oxford

Summary

□ We present measurements on off-shell Higgs to ZZ and Higgs decay width.

 \Box We find evidence of the off-shell Higgs at 3.2 σ . <u>ATLAS-CONF-2022-068</u>

□ The measurement of the Higgs total decay width is

 $\Gamma_{\rm H} = 4.6^{+2.6}_{-2.5}$ MeV@68% CL.

Consistent with CMS $\Gamma_{\rm H} = 3.2^{+2.4}_{-1.7}$ MeV@68% CL. <u>Nature. Phys. 18 (2022) 1329</u>

□ The BSM/EFT interpretation is almost done and will be provided soon. Stay tuned!