

Higgs production via Vector Boson Fusion and decaying to a pair of b-quarks

YSF Talk

Soumya Mukherjee TIFR, Mumbai (India) On behalf of the CMS collaboration

> La Thuile, 2023 conference 7th March, 2023

Higgs production mechanisms at the LHC

Key features of VBF process:

Vector Boson Fusion (VBF) \rightarrow sub-leading Higgs production process

 \rightarrow Cross section 3.78 pb @ N²LO QCD and NLO EWK accuracy

 \rightarrow Very distinctive topology by a pair of forward-backward jets referred to as "VBF" jets with high invariant mass (m_{ii}) and high pseudo-rapidity gap ($\Delta \eta_{ii}$), VBF criteria.

Current status of VBF Higgs production

Overview of VBF H \rightarrow bb

 \rightarrow Maximum BR H \rightarrow bb (58%)

Experimentally challenging

 \rightarrow Overwhelming QCD background events

Difficult to trigger the events due to extremely high production rate

 \rightarrow Low signal-to-background ratio reduce the sensitivity of the analysis

 \rightarrow Large resonant Z \rightarrow bb background (signal in the higher tail of the Z peak, difficult to model)

VBF H \rightarrow **bb: analysis technique**

Two dedicated high level trigger using VBF topology and b-tagging requirements
TIGHT : Stringent VBF criteria with loose b-tag
LOOSE : Loose VBF requirement with tight b-tag
→ The analysis is performed with the accumulated Run2 data of 91 fb⁻¹ integrated luminosity.

Two highest b-tagged AK4 jets are selected as Higgs candidate

 DNN based b-jet energy regression [Computing and Software for Big Science 4 (2020) 10] applied to improve the mass & resolution of the m_{bb} spectrum [15% improvement on σ/μ of signal process]

Two jets passing the VBF requirements [m_{jj} & Δη]: VBF jets.
 Multivariate techniques used to separate signal from the contributing backgrounds

VBF H \rightarrow **bb : Separation of signal from background**

- Separate MVA trainings TIGHT : Binary classifier (VBF vs QCD) LOOSE : Multi-classifier (VBF vs ggF vs ZJets Vs QCD)
- Events are categorized based on discriminants' score (D) Increase the analysis sensitivity
- Categories target not only VBF, but ggF and Z + jets as well
- **ggF categories** Improve sensitivity to the inclusive signal strength (ggF + VBF)
- **Zbb categories** Establish Zbb standard candle and constrain rate of the Z+jets production
- Total 18 categories

 \rightarrow All categories have been used simultaneously to extract the final results

Signal and resonant Z+jets backgrounds modeling

 \rightarrow The expected event yields of the signal (VBF & ggF) and resonant backgrounds of Z(bb) + jets [DY & EWK] estimated in each category from simulation by Crystal Ball function.

 \rightarrow 2nd order bernstein polynomial for the higher tail (mostly for Z + jets)

7

VBF H \rightarrow **bb : continuum background fit**

 \rightarrow Shape and normalization of the continuum backgrounds are derived from fit-to-data using Generic polynomial functions (F_i)

$$F_i^{QCD} = \exp\left(-b_i \cdot m_{bb}\right) \cdot \left(1 + \sum_{j=1}^n a_{ij} \cdot m_{bb}^j\right)$$

i : number of category, j : order of the polynomial function

 \rightarrow Order of the polynomial is determined by F-Test

 \rightarrow Bias study has been performed in each analysis categories by using alternative parametric function to fit data,

 \rightarrow Insignificant bias has been found (vanishing impact on results)

CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-01 15:34:57.047464 GMT Run / Event / LS: 320688 / 38405507 / 76

VBF H\rightarrowbb : Results

signal significance in std. dev.

10

	Process	Observed	Expected		
	Inclusive Hbb	2.5	2.9		
	VBFH-bb	2.4	2.7		

signal strengths

Process	Observed signal strength		
μ_{Hbb}	$0.92^{+0.32}_{-0.32}(\text{stat.})^{+0.31}_{-0.22}(\text{syst.})$		
$\mu_{\text{VBF-Hbb}}$	$0.97^{+0.35}_{-0.35}(\text{stat.})^{+0.39}_{-0.28}(\text{syst.})$		
μ_{Zbb}	0.94±0.20(stat.)±0.21 (syst.)		

 \rightarrow VBF Higgs production has been explored in different Higgs decay modes in Run-2 both for inclusive and differential measurements.

 \rightarrow VBF H \rightarrow bb results from CMS using Run2 data is very new and presented here.

 \rightarrow The exclusive VBF H \rightarrow bb production is established with a significance of 2.4 σ (exp. = 2.7 σ)

• the measured signal strength of the VBF H \rightarrow bb process is 0.97^{+0.53}_{-0.45}

 \rightarrow Analysis is almost comparable with ATLAS VBFH \rightarrow bb results using 126 fb⁻¹ data

 \rightarrow Combination of VBF H \rightarrow bb with existing combined Run-2 VBF results would increase the sensitivity further.

 \rightarrow LHC Run-3 has already been started with centre-of-mass energy of 13.6 TeV, planning to accumulate 300 fb⁻¹

 \rightarrow Reduction of statistical uncertainties

→ More sophisticated b-tag algorithm, rigorous use of machine learning make the channel more sensitive please stay tuned for the Run-3 results

Thank you

Additional material

HLT and offline event selection

			1		у <u>т</u>	
	Level	Requirements	set A (36.3 fb ^{-1})		set B (54.4 fb ^{-1})	
			TIGHTVBF	LOOSEVBF	TIGHTVBF	LOOSEVBF
	HLT	$p_{\rm T}$ thresholds	92, 76, 64, 16 GeV		105, 88, 76, 15 GeV	
		number of b-tags	≥ 1	≥ 2	≥ 1	≥ 2
		$\Delta \phi_{ m bb}$	≤ 1.6	≤ 2.1	≤ 1.9	≤ 2.8
		$\Delta \eta_{ m jj}$	≥ 4.1	≥ 2.3	≥ 3.5	≥ 1.5
	0	m_{ij}	$\geq 500 \text{ GeV}$	$\geq 240 \text{ GeV}$	$\geq 460 \text{ GeV}$	$\geq 200 \text{ GeV}$
		$p_{\rm T}$ thresholds	95, 80, 65, 30 GeV		110, 90, 80, 30 GeV	
	Offline	jet $ \eta < 4.7$	\checkmark	\checkmark	\checkmark	\checkmark
		\rightarrow Lepton veto	\checkmark	\checkmark	\checkmark	\checkmark
		number of b-tags ≥ 2	\checkmark	\checkmark	\checkmark	\checkmark
Reduce th	ne tt and	b-jet $ \eta < 2.4$	\checkmark	\checkmark	\checkmark	\checkmark
DY contrib	outions	$\Delta \phi_{ m bb}$	≤ 1.6	≤ 2.1	≤ 1.6	≤ 2.1
		$\Delta \eta_{ m ji}$	≥ 4.2	≥ 2.5	≥ 3.8	≥ 2.5
		m_{jj}	$\geq 500 \text{ GeV}$	$\geq 250 \text{ GeV}$	$\geq 500 \text{ GeV}$	$\geq 250 \text{ GeV}$

Systematic uncertainties

