tightly linked to LiquidO, AM-OTech/CLOUD, and SuperChooz collaborations/consortia & specially EDF

S U P E R C H O O Z

La Thuille 2023 Conference I Ith March 2023 — La Thuille, Italia

Anatael Cabrera

IJCLab (Orsay) CNRS / Université Paris-Saclay

~50 years of neutrino oscillations...

huge experimental/theory effort [discovery⊕establishment ⇔ Nobel 2015]

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

status on neutrino oscillation knowledge...

Standard Model(3 families)

[leptons & quarks] & PMNS_{3×3}($\theta_{12}, \theta_{23}, \theta_{13}$) & & ± $\Delta m^2 \& + \delta m^2$

no conclusive sign of any extension so far!!

(inconsistencies vs uncertainties)

must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

	today			≥2030			
	best knowledge		global	foreseen dominant		source	
θ12	3.0 %	sk⊕sno	2.3 %	<1.0%	JUNO	reactor	
θ23	5.0 %	NOvA+T2K	2.0 %	≲1.0%	DUNE⊕HK	beam (octant)	
θ13	1.8 %	DYB+DC+RENO	I.5 %	I.5 %	DC⊕DYB⊕RENO	reactor	
+δm²	2.5 %	KamLAND	2.3 %	≲1.0%	JUNO	reactor	
∆m ²	3.0 %	T2K+NOvA & DYB	1.3 %	≲1.0%	JUNO⊕DUNE⊕HK	<u>reactor</u> & beam	
Mass Ordering	unknown	SK et al	NO @ ~3σ	@5σ	JUNO&DUNE&HK	reactor⊕beam	
CPV	unknown	T2K	3/2π @ ≲2σ	@5σ?	DUNE⊕HK⊕ALL	reactor⊕ <u>beam</u>	
			(now)			(reactor-beam)	

JUNO \oplus DUNE \oplus HK will lead precision in the field (\rightarrow Mass Ordering & CPV) except θ_{13} !

NOTE: ORCA \oplus PINGU \oplus IceCube complementary (Mass Ordering & Δ m² measurements)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

4			1	
-	,	2		

 $\Delta m^2_{21} \, [10^{-5} \, eV^2]$

					NuFIT 5.0 (2020)	
		Normal Ore	dering (best fit)	Inverted Ordering $(\Delta \chi^2 = 2.7)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
neric data	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	
	$\theta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
	$\sin^2 \theta_{23}$	$0.570^{+0.018}_{-0.024}$	$0.407 \rightarrow 0.618$	$0.575^{+0.017}_{-0.021}$	$0.411 \rightarrow 0.621$	
lqsor	$ heta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$	
t atn	$\sin^2 heta_{13}$	$0.02221^{+0.00068}_{-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02240^{+0.00062}_{-0.00062}$	$0.02053 \rightarrow 0.02436$	
t SK	$ heta_{13}/^{\circ}$	$8.57_{-0.12}^{+0.13}$	$8.20 \rightarrow 8.97$	$8.61_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$	
ithou	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$	
W	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$	
		Normal Ore	dering (best fit)	Inverted Ordering $(\Delta \chi^2 = 7.1)$		
lata		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	
	$\theta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
eric o	$\sin^2 \theta_{23}$	$0.573\substack{+0.016\\-0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$	
sphe	$ heta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3^{+0.9}_{-1.1}$	$40.3 \rightarrow 51.8$	
utmo	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238^{+0.00063}_{-0.00062}$	$0.02052 \rightarrow 0.02428$	
SK a	$\theta_{13}/^{\circ}$	$8.57_{-0.12}^{+0.12}$	$8.20 \rightarrow 8.93$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.96$	
with	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498^{+0.028}_{-0.028}$	$-2.581 \rightarrow -2.414$	

flagship neutrino experiments...

enough? (permille precision)

European contributions in all experiments — including technology (LAr, etc)

2 accelerator experiments HyperK & DUNE→ redundancy

I reactor experiment JUNO→ no cross-check!

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

Kamiokand

DUNE (USA)

any room for new physics?

SMV . : knowns & unknowns...

7

consider full matrix structure (not just composition)

why shape?

• large mixing but a small one!

largest CP-violation (SM)

•any symmetry behind? [or Nature's caprice?]

U_{3x3} unitary?

[assumed!!, not demonstrated]

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

neutrino unique in Standard Model... more discoveries?

S U P E R C H O O Z

the new opportunity...

somewhere in the middle of Europe, there is Chooz..

maybe Chooz?

<u>Chooz</u> is tiny cute little village in the Ardennes $Chooz = powerful reactor(s) \oplus overburden$

Chooz-B nuclear reactor plant: 2x N4 reactors [4.2GWthermal each]

civil-construction near a reactor?

upon Double Chooz underground laboratories limitations...

too small
too shallow! (to today's technology capability)

esson: don't...!

physics at Chooz: future?

14

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

an underground unknown...

huge caverns (already built) of the size of Super-Kamiokande right next to Chooz reactors! (unique site in France-Belgium / Europe / World?)

Chooz-A for science?

30 000 m³

20 000 m³

Super-Kamiokande (50kton)

Super-KamiokaNDE @ Japan

construction caverns [1962-1967]

SuperChooz cavern is <u>built</u> (60's)...

historical opportunity!! one of the largest underground laboratories in Europe — built!!

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

(despite COVID)

S U P E R C H O O Z

experimental scenario...

SuperChooz Pathfinder starts...

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

We are delighted to announce that the **#SuperChooz** agreement between **@EDFofficiel** and **@CNRS** directions was signed on the 7th Sept 2022 (twitter.com/IN2P3_CNRS/sta...), thus officially starting the so-called "SuperChooz Pathfinder" exploration era.

S U P E R C H O O Z

pathfinder [2022-2028]

exploration is <u>now official</u>...

SuperChooz experimental setup...

the Ardennes mountains European **UK Research** Innovation and Innovation Council AM-OTech project [EIC-UKRI] **CLOUD** experiment CNIS I Dec 2022 Chooz-B: Reactor Cores Chooz-A: Cavern Reactor Core Ultra Near Detectors @ Chooz-B: LiquidO technology •Mass: ≤ 5 tons • Overburden: ≤5m •Baseline: ≤30m the Meuse river Super Far Detector @ Chooz-A LiquidO technology •Mass: ~10,000 tons •Overburden: ≤100m

•Baseline: ~1 km

24

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

SuperChooz \rightarrow new laboratory facilities — beyond the <u>existing LNCA</u> (key support!)

S U P E R C H O O Z

experimental demonstration

experimental demonstration

Article | Published: 20 April 2020

Double Chooz θ_{13} measurement via total neutron capture detection

The Double Chooz Collaboration

Nature Physics 16, 558–564 (2020) Cite this article

• **no Gd** needed a priori — simpler •extreme precision single/multi-detector(s) \rightarrow <u>simpler detectors</u> (avoid multi-volumes) • control of all systematics at per mille •geometrical full flux cancellation systematic →fewer reactors sites is better! •exquisite energy control absolute/relative Chooz site full background knowledge

DC-ND:

Signal \approx 816 v/day (average over cycle) **BG(\beta-,\alpha,\gamma,p) \approx 39 day⁻¹ ("some per day")**

Signal/BG ≈ 21 → 30 within IBD region [0.5,9.0]MeV

systematics can be controlled: ~0. % (each) COULDE

[flux, background, detection]

energy control: ≤0.5%

Double Chooz data & expertise...

SSUE!!! overburden <100m rock (or <300 mwe)

world underground volume...

experimental demonstration II

LIQUID

new technology — the breakthrough

³⁰ today's liquid scintillator technology: <u>transparent...</u>

extremely low overburden→ new technology needed

CTF @ Gran Sasso (Borexino R&D)

stochastic light confinement

Liqudi $O \rightarrow$ photon's "random walk" (self-confinement)

λ(scattering)≥**I**0**m**

scattering → random walk → light ball [order | cm]
 scattering mean-free-path order | mm: x | 0⁻⁴ smaller than usual

Iossless scattering:

- Mie scattering: achromatic & tiny losses ["cloudy" touch]
- Rayleigh scattering: chromatic & lossless
- •Internal Reflection (Snell's law lossless)
- warning: avoid reflection (losses @ order ~1%/reflection)

LiquidO \leftrightarrow unique stochastic light confinement

 \rightarrow must NOT be transparent!!

Rayleigh & Mie Scatterin λ(scattering)≤lcm

inducing light to a point (lossless).

Topology (X,Y) direct & native (PID) → possible sub-mm vertex precision

Vanilla LiquidO: ID lattice (fibres along Z-axis only)

LiquidO can have up 3 orthogonal fibre lattice orientations (3D)

32

unprecedented PID@MeV...

potential: reduce overburden/shielding

 $opacity \rightarrow (native) self-segmentation$

needless segmentation: problematic @ IMeV (pollution, cost \oplus complex, etc)

~IMeV: reactor, geoneutrino, solar, etc

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

experimental demonstration III

a priori <u>no showstopper</u>

SuperChooz : ~9 700 m³

~16m

16m

·38m

SINGAPORE AIRLI

some common technology but not methodology

- •scintillator: ✓ (improvement)
- fibres ✓ (improvement)
- •segmentation X (simplification, cheaper, less BG)
- light collection: ✓ (improvement expected)
- •photo-detector: ✓ (simplicaition with SiPM)
- •MeV optimisation→Scaling R&D [≥2024]

SuperChooz (~I0kton) similar dimensions as NOvA (~I4kton) & one module of DUNE (~I0kton)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

First Release at CERN July 2019 (detector seminar)

https://indico.cern.ch/event/823865/

nature communications physics

Afticle | Open Access | Published: 21 December 2021

Neutrino physics with an opaque detector

LiquidO Consortium

<u>Communications Physics</u> 4, Article number: 273 (2021) | <u>Cite this article</u> 1867 Accesses | 1 Citations | 10 Altmetric | <u>Metrics</u>

Abstract

COVID delayed

In 1956 Reines & Cowan discovered the neutrino using a liquid scintillator detector. The neutrinos interacted with the scintillator, producing light that propagated across transparent volumes to surrounding photo-sensors. This approach has remained one of the most widespread and successful neutrino detection technologies used since. This article introduces a concept that breaks with the conventional paradigm of transparency by confining and collecting light near its creation point with an opaque scintillator and a dense array of optical fibres. This technique, called LiquidO, can provide high-resolution imaging to enable efficient identification of individual particles event-by-event. A natural affinity for adding dopants at high concentrations is provided by the use of an opaque medium. With these and other capabilities, the potential of our detector concept to unlock opportunities in neutrino physics is presented here, alongside the results of the first experimental validation.

www.nature.com/articles/s42005-021-00763-5

proof-of-concept: simulation & data [µ-LiquidO]

physics potential — appetiser

latest experimental results @ Neutrino 2022 (June 2022)

latest prototype detector results [mini-LiquidO]

physics potential — more precision

LiquidO Official WEB: https://liquido.ijclab.in2p3.fr/

LiquidO Consortium*

J. dos Anjos^a, L. Asquith^r, J.L. Benev^q, T.J.C. Bezerra^r, M. Bongrand^q, C. Bourgeois^{f^{\alpha}}, D. Brasse^g, D. Breton^{f^{\alpha}}, M. Briere^{f^{\alpha}}, J. Busto^b, <u>A. Cabrera[†]f^{\alpha}</u>, A. Cadiou^q, E. Calvo^c, H. Carduner^q, V. Chaumat^{f^{\alpha}}, E. Chauveau^h, M. Chenⁿ, P. Chimenti^e, F. Dal Corso^{k^{α}}, A. Dahmane^g, J.-F. Le Du^{f^{α}}, S. Dusini^{k^{α}}, A. Earle^r, C. Frigerio-Martins^e, J. Galán^s, J.A. García^s, R. Gazzini^{f^{α}}, A. Gibson-Foster^r, D. Giovagnoli^g, P. Govoni^{j^{α}, j^{β}}, M. Grassi^{k^{β}}, W.C. Griffith^r, F. Haddad^q, J. Hartnell^r, A. Hourlier^g, G. Hull^{f^{\alpha}}, I.G. Irastorza^s, L. Koch^{i^{α}}, P. Laniéce^{f^{α , f^{β}},} C. Lefebvreⁿ, F. Lefevre^q, P. Loaiza^{f^{α}, f^{β}}, G. Luzón^s, J. Maalmi^{f^{α}}, F. Mantovani^{d^{α}, d^{β}}, C. Marquet^h, M. Martínez^s, L. Ménard^{f^{α}, f^{β}}, D. Navas-Nicolás^{f^{α}}, H. Nunokawa^m, M. Obolensky^{f^{α}, f^{β}}, J.P. Ochoa-Ricoux^o, C. Palomares^c, P. Pillot^q, J.C.C. Porter^r, M. S. Pravikoff^h, M. Roche^h, B. Roskovec¹, M.L. Sarsa^s, S. Schoppmann^{i^β}, A. Serafini^{k^{α},k^{β}}, W. Shorrock^r, L. Simard^{f^{α}}, M. Sisti^{j^{α}}, D. Stocco^q, V. Strati^{d^{α},d^{β}}, J.-S. Stutzmann^q, F. Suekane^{$\ddagger p$}, M.-A. Verdier^{f^{\alpha}, f^β}, A. Verdugo^c, B. Viaud^q, A. Weber^{i^α}, and F. Yermia^q ^aCentro Brasileiro de Pesquisas Físicas (CBPF), Rua Xavier Sigaud 150, Rio de Janeiro, 22290-180, Brazil ^bUniversité d'Aix Marseille, CNRS/IN2P3, CPPM, Marseille, France ^cCIEMAT, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Av. Complutense 40, E-28040 Madrid, Spain ^{d^α}INFN, Ferrara Section, Via Saragat 1, 44122 Ferrara, Italy ^{d^β}Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy ^eDepartamento de Física, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário Cx. Postal 10.011, CEP 86.057-970, Londrina – PR, Brazil ^{f^α}Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ^{f^β}Université de Paris Cité, CNRS/IN2P3, IJCLab, 91405 Orsay, France ^gUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France ^hUniversité de Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France ^{i^α}Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128 Mainz, Germany ^{i^β}Johannes Gutenberg-Universität Mainz, Detektorlabor, Exzellenzcluster PRISMA⁺, Staudingerweg 9, 55128

Mainz, Germany

^{j°}INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy ^{j^β}Dipartimento di Fisica, Università di Milano-Bicocca, I-20126 Milano, Italy ^{k°}INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy

^{k^β}Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy
^lInstitute of Particle and Nuclear Physics Faculty of Mathematics and Physics, Charles University,
V Holešovičkách 2 180 00 Prague 8, Czech Republic

^mDepartment of Physics, Pontifícia Universidade Católica do Rio de Janeiro, C.P. 38097, 22451-900, Rio de Janeiro, Brazil

ⁿDepartment of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L3N6, Canada

^oDepartment of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, California 92697, USA

^pRCNS, Tohoku University, 6-3 AzaAoba, Aramaki, Aoba-ku, 980-8578, Sendai, Japan ^qSubatech, CNRS/IN2P3, Nantes Université, IMT-Atlantique, 44307 Nantes, France ^rDepartment of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom ^sCentro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain

invention/conception 2012-2013 — since 2016 consortium (~20 institutes & 10 countries)

SuperChooz's pilot project

U

UK Research

and Innovation

first LiquidO-based experiment...

project: "AntiMatter-OTech"

European

Innovation

Council

CLOUD = "Chooz LiquidO Ultranear Detector"

European Innovation Council

the Ardennes mountains

the Meuse river

neutrino emission: $\sim 10^{21}$ v/s per core

CLOUD Detector
LiquidO technology
Mass: ~5ton
Overburden: ≤3m
Baseline: ≤30m (UND)
Rate: ≥10,000 v per day

 $\Rightarrow \delta[\phi_{reactor}] \lesssim 1\%$ (day) — world's best precision [DC]

experimental setup...

Chooz-B: Reactor Cores

S U P E R C H O O Z

scientific programme...(so far)

neutrino sources...

large SuperChooz detector→ vast physics programme!

...also **atmospherics**!!

geoneutrino? yes, but huge irreducible background by reactor neutrinos!! Anatael Cabrera (Cl

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

SuperChooz rates...

10 years exposure

Antineutrino Reactor (@1.1km): φ ≈ 6 v•day⁻¹•ton⁻¹ [→DC-FD] φ ≈ 20M v•year⁻¹ [~10kton] φ ≈ 220M v's [exposure: 100,000 ton•year]

CIIS

Chooz-A: Cavern Reacto Core

Antineutrino Reactor (@20m): $\phi \approx 16k \ v \cdot day^{-1} \cdot ton^{-1} [\rightarrow DC - ND]$ $\phi \approx 10M \ v \cdot year^{-1} [\sim 2ton]$

 $\phi \approx 100 \text{ v's [exposure: 20 ton-year]}$

Neutrinos Sun: ¢₀ ≤ 100 v's [exposure: 20 ton•years]

Chooz-B: Reactor Cores

Ultra Near Detectors @ Chooz-B:

- LiquidO technology
- •Mass: ≤5 tons
- •Overburden: ≤5m
- •Baseline: ≤30m

the Meuse river

Super Far Detector @ Chooz-A

LiquidO technology
Mass: ~10,000 tons
Overburden: ≤100m
Baseline: ~1 km

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

detection: all about coincidences...

the power of coincidences

low energy (<3MeV) neutrinos interactions benefit by interactions leading to coincidences

Reines et al 1956

(neutrino discovery) **CC:** $\bar{\nu}_e + p \rightarrow e^+ + n$ ($\tau \approx 220 \mu s$ for only H \oplus C)

Raghavan et al 1977

(pp solar neutrino — unobserved) **CC:** $\nu_e + 115In \rightarrow e^- + \gamma + \gamma/e^-$ ($\tau \approx 4.7\mu s$ decay of **Sn***)

major **R&D** by **LENS** et al [many years]

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

S U P E R C H O O Z

<u>preliminary</u> physics programme...

rationale...

high precision SM's neutrino oscillation ⇒ synergise with JUNO & HK⊕DUNE

neutrinos probing BSM→ discoveries? ⇒ beyond today's paradigm?

⁴⁷ Super Chooz potential under investigation...

Plot: hacked version from original in Ellis, Kelly & Weishi-Li at arXiv:2008.01088

Super Chooz: the smallest but powerful...

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

$$\frac{du}{dt} = \frac{dt}{dt} = \frac{dt$$

Anatael Cabrera (CINRS-INZP3) — IJCLab / Universite Paris-Saciay (Orsay)

overall Θ | 3 \oplus Δ m²(ee) sensitivity...

[first time] sub-percent measurement of $\theta | 3 \oplus \Delta m^2$ (ee)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

- JUNO'S Mass ordering (oscillation)
- PMNS' shape: the largest term!
- (simultaneously) resolve octant-023?
- · HyperK (DUNE's CP violation
- synergies: extra precision on

why A13 & [[]m2]? (reactor)

- PMNS' shape: the smallest term?
- (unique) cross-check JUNO's ∆m²
- world most precise $\theta_{13}!!$ [permille precision]

50

T2K⊕reactor best knowledge CP-Violation...

51

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

Super Chooz potential under investigation...

52

synergy: SC θ I 3 may help to resolve the " θ 23 octant" ambiguity (HK and DUNE) measured the combined effect of θ I 3 \oplus θ 23 (harder to disentangle)

Super Chooz: the smallest but powerful...

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

$$\frac{du}{dt} = \frac{dt}{dt} = \frac{dt$$

Anatael Cabrera (CINRS-INZP3) — IJCLab / Universite Paris-Saciay (Orsay)

Sun's inner-most insight...

2 main reactions...

•pp Chain (dominant in Sun, still)

•**CNO Cycle** (most stars dominant)

spectral precision "Solar-SM" (SSM)

• SuperChooz up to sub-% precision on everything

•probe beyond-SSM & beyond-SM?

highest precision solar physics...

solar spectra extraction...

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

ultimate solar spectra knowledge?

low systematics (fiducial volume, efficiency, energy, In-fraction, etc)→ under final evaluation

ISSUE: exclusive Indium cross-section knowledge? Possible ~1%? [a la Ga]

neutrino oscillation transition...

In-interaction: neutrino energy scan (impossible for elastics scattering)

use ϕ (SNO-NC) for ⁸B control [1.5,10] MeV — ultimate limitation?

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

Sun's neutrino knowledge

direct probing innermost structure

precision beyond Solar-SM — first time!

neutrino solar astrophysics!

$\ln u (u) = m o_{u,u-1} / (u) = halo u / (3) / (2E - 0) / (2E - $	
$m\omega^2 \langle q_n \cdot a^3 q_n \rangle = \sqrt{n+1} Sn; n-1 $ $\frac{\partial G}{\partial t} = (\frac{d}{ML^2}) = (z) (\overline{\Pi qL}) $ $dr dq dr dq dq pr$	
$\langle \varphi_{r'} \chi \varphi_{n}\rangle = \sqrt{\frac{1}{2}} \left[\sqrt{\ln t} \int_{\eta_{1},\eta_{1}} + \sqrt{\ln \delta_{n',\eta_{1}}} \right] \qquad E = \frac{1}{2} \prod_{g \neq 0}^{n} \int_{0}^{\infty} \int_{0}^{\infty} = \frac{2E}{HgL} \qquad \qquad \int_{0}^{L} v = \frac{d^{2}r}{d^{2}r} \cdot \left(\frac{J}{J}\right)^{2} + \frac{dr}{d\theta} \cdot \frac{J}{J} \frac{d}{d\theta} \left(\frac{1}{r^{2}}\right) \qquad \qquad$	F. JA
$\frac{1}{2}m\omega^{2}x^{2}\left[\varphi(x)=E\varphi(x) \langle P_{n}(P) _{n}^{k}\rangle=i\sqrt{\frac{4}{2}m\omega}\left[\sqrt{m}\left[\sqrt{m}\left(\sqrt{n}\right)^{2}\right] \frac{\partial Q_{n}(x)}{\partial f}\left(\frac{1}{2}\right)^{n}\left(\sqrt{n}\left(\sqrt{n}\right)^{2}\right) \frac{\partial Q_{n}(x)}{\partial f}\left(\frac{1}{2}\right)^{n}\left(\sqrt{n}\left(\sqrt{n}\right)^{2}\right) \frac{\partial Q_{n}(x)}{\partial f}\left(\frac{1}{2}\right)^{n}\left(\sqrt{n}\right)^{2}\right] \frac{\partial Q_{n}(x)}{\partial f}\left(\frac{1}{2}\right)^{n}\left(\sqrt{n}\right)^{2}$	20
$x = \hat{f} = \frac{1}{2} \begin{bmatrix} 0 \sqrt{10} & 0 & 0 \\ 0 \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \sqrt{10} & 0 & 0 \end{bmatrix}$	¥ = (
$ \int \frac{1}{(a^{2})^{2}} \int \frac{1}{(a^{2})^{2}} = \int \frac{1}{(a^{2})^{2}} \int$	$\frac{d^2w}{d6^2} = -$
$(+\bar{P})$ $G[(e_{n}, T_{(k)})^{(n)}] = 00000 \text{ or } [0,0,0] = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	2 m - V
$\frac{1}{ V_{r} ^{2}} = \frac{1}{ V_{r} ^{2}} = \frac{1}$	1 42
(historically) symmetries crucial in noutrine manifestation	52 dw
P) [0,01]=4[x+1] (INSCORCANY) Symmetries crucial in neutrino mainestation + w=	J der
$(P) = \frac{1}{2} \left[\hat{x}_{1}(\hat{r}) - \frac{1}{2} \left[\hat{r}_{1}(\hat{x}) \right]^{2} + \frac{1}{2} \left[\hat{r}$	B-V
neutrino oscillation implied.	1, C E
\rightarrow no need of the lepton-flavour number (L _i)	$\mathcal{E} = \overline{(\mathcal{A})}$
$+ \frac{1}{(\hat{x} - i\hat{P})} \rightarrow \text{discropancies in flux normalisation}$	
2 ² UISCIEPARCIES IT HUX HOI HAIISAUON — UITCARTEY VIOLACION	$E = Mc^{2}$
$f = \frac{1}{2m} \left\{ P' \right\} = -\frac{n}{2m} \left\{ P'_n(\pi) \frac{\partial}{\partial x} P_n(\pi) \partial \pi \right\} = A \sin(\omega_0 t + Q) $ $\ddot{\pi} + (\mu_n^* \sigma = O \longrightarrow w_0 = \left(\frac{c}{11}\right)^k v_0 : w_0 \ln cos Q $ $(A - v'/c^*)$	- /
\rightarrow new phenomenology manifesting as symmetry violation 2	$==(p^{z}c^{q}+f)$
= $\sqrt{n+4} \left[\frac{1}{n+4} \right] = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \vec{\epsilon}) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \vec{\epsilon}) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) = -\frac{\hbar^2}{2\pi} \Delta \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} \Psi(\vec{r}, \epsilon) + \sqrt{(\vec{r}, \epsilon)} + ($	-SE
$= \sqrt{n} \Psi_{n-1} \rangle = \frac{1}{2^{2} \sqrt{2}} \frac{1}{2^{2} \sqrt{2}} + \frac{1}{2^{2} \sqrt{2}} \frac{1}{2^{2} \sqrt{2^{2} \sqrt{2^{2} + 2^{2} + 2^{2} \sqrt{2^{2} + 2^{2} + 2^{2} \sqrt{2^{2} + 2^{2} \sqrt{2^{2} + 2^{2} + 2^{2} \sqrt{2^{2} \sqrt{2^{2} + 2^{2} \sqrt{2^{2} \sqrt{2^{2} + 2^{2} \sqrt{2^{2} \sqrt{2^{2} + 2^{2} \sqrt{2^{2} \sqrt{2^{2} \sqrt{2^{2} + 2^{2} \sqrt{2^{2} \sqrt{2^{2} \sqrt{2^{2} + 2^{2} \sqrt{2^{2} \sqrt{2^{2} \sqrt{2^{2} \sqrt{2^{2} + 2^{2} \sqrt{2^{2} \sqrt{2} 2}$	4 C
$ = \frac{1}{2\pi/\omega} $	^k At ^E
$\chi_1 q_1\rangle + \lambda_2 q_2\rangle \Rightarrow \lambda_1 \langle q_1 + \lambda_2 \langle q_2 \qquad \langle \kappa \rangle = \frac{1}{6}$	E+ 1/2+
$f_{1}(x+x) P\rangle \qquad f_{1}^{(n)} \iff \xi_{n}^{(n)}\rangle \qquad E_{1} < k\rangle = \langle u\rangle = \frac{1}{2} M W_{r}^{2} A^{2} \qquad \theta_{2} \theta_{0} P\rangle \qquad 1$	
$\sqrt{m\omega} \sqrt{2} \left[\frac{\omega + \omega}{m\omega} \sqrt{2} \right] \left[\frac{\omega + \omega}{\omega} \sqrt{2} \right] \left[\frac{\omega + \omega}{\omega} \sqrt{2} \right] \left[\frac{\omega + \omega}{\omega} \sqrt{2}$	= dpx
$\left[\frac{1}{2}\left[\sqrt{n+\lambda}\left[P_{n+1}\right] + \sqrt{n}\left[P_{n-1}\right]\right] c \neq 0 = 1 (z_{0}) f \neq 0 = 1 (z_{0}) (z_{0})$	00
physics II stundamental symmetric	ERE
TE PARTIE AT A STATE A	
$\sum_{r=1}^{n} \sum_{r=1}^{n} \sum_{r$	
$\beta = \beta =$	

beyond—SM neutrino oscillations (L;) CP Violation? [SM→ foreseen in CKM and PMNS] • (indirectly) HyperK⊕DUNE knowledge on θ13 → extra precision on θ23 ? [backup]

Unitarity Violation? [BSM]

- OUND: reactor absolute flux (up to 0 5%?) CLOUD
- @SFD: solar-pp absolute flux (up to 0,6%?)

CPT Violation? [BSM]
 Output of the superchooz (JUNO - difference?)

Baryon # Violation? proton-decay [multi-mode] (discovery potential

discovery potential

S U P E R C H O O Z

main conclusions...

status on neutrino oscillation knowledge...

SuperChooz is designed cover the full **SM** *picture* (3 families) [<u>synergy</u>]

SuperChooz explore the **SM**'s <u>consistency/completeness</u> \rightarrow **BSM discovery**?

SuperChooz = SC							
		today	-	≥2030			
	best kno	owledge	global	foreseen	dominant	source	
θ12	3.0 %	SK⊕SNO	2.3 %	≤0.5%	JUNO⊕ SC	reactor⊕solar	
θ23	5.0 %	NOvA+T2K	2.0 %	≲ .0%?	DUNE⊕HK [SC]	beam (octant)	
θιз	1.8 %	DYB+DC+RENO	1.5 %	≤0.5 %	SC	reactor	
+δm²	2.5 %	KamLAND	2.3 %	<0.5%	JUNO⊕ SC	reactor⊕solar	
Δm ²	3.0 %	T2K+NOvA &	1.3 %	<0.5%	JUNO⊕DUNE⊕HK⊕ SC	reactor⊕beam	
Mass Ordering	unknown	SK et al	NMO @ <u>≤</u> 3σ	@5σ	JUNO⊕DUNE⊕HK	reactor⊕beam	
СР	violation?	T2K+NOvA	3/2π @ <mark>≤2</mark> σ	@5σ?	DUNE⊕HK [SC]	beam driven	
СРТ	violation?			< %?	SC	reactor⊕solar	
Unitarity	violation?			< %?	SC	reactor⊕solar	
Baryon#	violation?				JUNO⊕DUNE⊕HK⊕ SC		

reactor⊕solar main channels of SC, but low energy atmospherics under study...

neutrinos back to Europe? (high precision)

historical opportunity for Europe's neutrino science (fundamental & innovation)...

thanks to EDF teams & support, LiquidO consortia, AM-OTech consortia, CLOUD collaboration, and SuperChooz team. Дякую...thanks...merci...고맙습니다...ありがとう...ありがとう...danke...obrigado...спасибі...grazie...谢谢...hvala...gracias...リズ...

S U P E R C H O O Z

new flagship neutrino physics project based in Europe [>2030] (once JUNO⊕HyperK⊕DUNE are running)

new detector [LiquidO]
• new site [Chooz-A] • new physics

SedF CNrs

https://liquido.ijclab.in2p3.fr/

anatael@in2p3.fr

HEP-European Physics Society (July 2019 @ Ghent Belgium)

EP Seminar

The SuperChooz Experiment: Unveiling the Opportunity

- by Dr Anatael CABRERA (IJCLab IN2P3/CNRS)
- Tuesday 29 Nov 2022, 11:00 → 12:00 Europe/Zurich
- 222/R-001 (CERN)

ps://indico.cern.ch/event/1215214/

CNrs

ittps://zenodo.org/record/7504162

https://indico.cern.ch/event/577856/contributions/342160

https://liquido.ijclab.in2p3.fr/

complementary references...