GRAVITATIONAL WAVE DETECTORS bridging the generation gap

Virgo Spokesperson

SO FAR

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

SCIENCE WITH GW (I)

ApJL, 848:L13

SCIENCE WITH GW (II)

La Thuile - March 11th, 2022

G Losurdo - INFN Pisa

arXiv:2111.03606

FROM ONE TO MANY: POPULATIONS

Entering in the «statistical information driven» regime

- NSBH binaries
- Lower mass gap
- NS mass distribution
- Substructure in BBH mass distribution
- BBH rate evolution with redshift
- Providing data for many studies

https://arxiv.org/abs/2111.03634

arXiv:2111.03604

7

MID-TERM

MAIN FIGURES

AdV+/Phase 1

KEY TECHNOLOGIES FOR ADV+

KEY TECHNOLOGIES FOR ADV+

100 KG MIRRORS, IMPROVED COATINGS

ET EINSTEIN TELESCOPE

Einstein Telescope

- Underground infrastructure, 10km long
- 3 nested couples of interferometers
 - ET-HF: room temperature, high power, enhancing HF sensitivity
 - ET-LF: cryo, low power, enhancing LF sensitivity

14

Challenging engineering	ET Enabling Technologies	Parameter Arm length Input power (after IMC) Arm power Temperature	ET-HF 10 km 500 W 3 MW 290 K	ET-LF 10 km 3 W 18 kW 10-20 K	ET EINSTEIN TELESCOPE
New technology in cryo-cooling New	The multi- interferometer approach asks for two paralled technology	Mirror material Mirror diameter / thickness Mirror masses Laser wavelength SR-phase (rad) SR transmittance Quantum noise suppression	fused silica 62 cm / 30 cm 200 kg 1064 nm tuned (0.0) 10 % freq. dep. squeez.	silicon 45 cm/ 57 cm 211 kg 1550 nm detuned (0.6) 20 % freq. dep. squeez.	Evolved laser
technology in optics New laser	dev repments: -LF: • Underground	Filter cavities Squeezing level Beam shape Beam radius Scatter loss per surface Scismic isolation	1×300 m 10 dB (effective) TEM ₀₀ 12.0 cm 37 ppm SA, 8 m tall	2×1.0 km 10 dB (effective) TEM ₀₀ 9 cm 37 ppm mod SA, 7 all	technology
technology High precision	 Cryogenics Silicon (Sapphire) test r 	Seismic (for $f > 1$ Hz) Gravity gradient subtraction Nasses	5 · 10 ⁻¹⁰ none	5 · 10 ⁻⁰ a facto ta rew	technology in optics
low noise control High ovality	 New coatings New laser wavelength Seismic suspensions 	• ET-HF: • High po • Large te • New co	ower lase est masses - atings		Highly innovative adaptive optics
electionics and new controls	 Frequency dependent squeezing 	Therma Frequer squeezi	Il compensat ncy depende ng	tion	High quality opto- electronics and

- ET will start taking data in >2035
 - For Virgo and LIGO it took one decade to reach initial detector's target sensitivity
- Existing detector will still play a crucial role for ~ a decade after O5
- Two possible approaches:
 - Stay at the O5 sensitivity and observe for a long time
 - Upgrade and observe later at a better sensitivity

EVENTS $\propto d^3 T$

If you have the technology and money for a significant upgrade, then do it

VIRGO_NEXT

a Thuile March 1th,

IS A NEW UPGRADE POSSIBLE?

- Are there developments on key technologies promising a significant enhancement of the sensitivities?
- Yes. R&D is making progress and a new push will come from ET
- Areas for synergies:
 - Better coatings
 - Higher squeezing level
 - High power laser
 - Control of thermal effects
 - Newtonian noise subtraction
 - Reduction of low frequency noises

A NEW UPGRADE: GOALS

- Continue/extend the Virgo/LIGO science program until the advent of 3G detectors
 - ~ x2 sensitivity improvement wrt AdV+
- □ Intermediate step in technology developments between 2G+ and 3G
 - Framework: same Virgo wavelength, room temperature, "same" infrastructure
 - Risk reducer for Einstein Telescope
 - Strong synergies on common R&Ds
- Keeps the community together, allows to form a new generation of GW interferometry experts

COATING RESEARCH

- Coating thermal noise remains the main offender in GW detector sensitivity
- 20 yrs R&D on amorphous materials within Virgo/LIGO has produced incremental progress. Still aiming to a breakthrough
- Three main lines open
 - New amorphous materials
 - Crystalline oxides
 - Crystalline AlGaAs
- Significant loss reduction achieved on small samples of AlGaAs, but large samples are not available so far
- All the 3 lines requires significant investments
 - Synergy with ET is crucial

T = 300 K

Credit: G Cagnoli VIR-1070A-22

LF NOISE

10-5

- At 3 Hz ET is O(10⁶) better than today's detectors
- Virgo_nEXT can be a key to understand/tackle LF noises
 - Sensing/controls
 - Environmental
 - Scattered light

. . .

SOME FIGURES

	AdV+ best	V_next best	ET HF
Power inj.	125 W	277 W	500 W
Arm power	390 kW	1.5 MW	3 MW
FDS detected	6 dB	10 dB	10 dB
Mirror mass	42/105 kg	105 kg	200 kg
beam radius	49/91 mm	91 mm	120 mm
coating losses	5.4e-5	6e-6	1.25e-5
NN reduction	1/5	1/5	0-1/3

Virgo_nEXT STATUS

- A concept study has been submitted to (and endorsed by) the funding agencies
- A Design Team (coordinated by V Fafone INFN) is being set up to produce a baseline design within 18 months
- An "Early R&D plan" will be submitted to the agencies in the next months
- Discussing with LIGO and ET for coordination on R&D and schedule

CONCLUSIVE REMARKS

