

Rare Higgs decays, Higgs BSM and di-Higgs

Friday, March 10, 2023

Gabriel Palacino on behalf of the ATLAS and CMS Collaborations

> This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0010120

Rare Higgs decays

ATLAS search for Higgs decays to $\omega\gamma$ and $K^*\gamma$, and Quarkonium

HDBS-2018-53 arXiv:2208.03122

Higgs decays to Quarkonium + photon

INDIANA UNIVERSITY

- Allows for exploration of the Higgs couplings to *c* and *b* quarks
- Reconstruction of the event is performed via the muons from the Quarkonium decay and the photon

√s=13 TeV, 139 fb⁻¹ $9.6 < m_{\mu^+\mu^-} < 10.4 \text{ GeV}$ 250 300 $m_{\mu^{+}\mu^{-}\gamma}$ [GeV]

	95% CL upper limits										
		Branchin	$\sigma \times \mathcal{B}$								
Decay	Higgs boson [10^{-4}]		Z boson [10 ⁻⁶]		Higgs boson [fb]	Z bo					
channel	Expected	Observed	Expected	Observed	Observed	Ob					
$J/\psi \gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12						
$\psi(2S) \gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61						
$\Upsilon(1S) \gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14						
$\Upsilon(2S) \gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24						
$\Upsilon(3S) \gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19						

ATLAS search for Higgs decays to $\omega\gamma$ and $K^*\gamma$, and Quarkonium

HDBS-2019-33 arXiv:2301.09938

Higgs decays to $\omega\gamma$ and $K^*\gamma$

- Rare decays allow for exploration of Higgs couplings to light quarks
- Exclusive decay analysis targeting flavor-changing interactions
- Events are reconstructed via their predominant $\pi^+\pi^-\pi^0$ and $K^\pm\pi^\pm$ final states

INDIANA UNIVERSITY

Higgs BSM

Di-photon resonances

<u>HIGG-2019-23</u> arXiv:2211.04172

- Narrow resonances of mass 10-70 GeV are explored
- Events with pairs of closely spaced photons with large $p_T^{\gamma\gamma}$ are selected
- Analysis also recasted in a so-far uncovered phase-space of axion-like particles by di-y searches

INDIANA UNIVERSITY U

ATLAS and CMS resonances to W^+W^-

138 fb⁻¹ (13 TeV)

95% CL Excluded:

1000

Observed 68% expected

Expected 95% expected

THDM Type-II

CMS-PAS-HIG-20-016

CMS

Preliminary

$H \rightarrow W^+W^- \rightarrow ev\mu v, \mu v\mu v, evev$

- In addition to a narrow width, various relative widths up to 10% have been considered
- The fraction of VBF production (f_{VBF}) has been studied in the rage $0 < f_{VBF} < 1$

Scenario	Mass [GeV]	ggF cross sec. [pb]	VBF cross sec. [pb]	Local signi. $[\sigma]$	Global signi. $[\sigma]$
$SM f_{VBF}$	800	0.16	0.057	3.2	1.7 ± 0.2
$f_{VBF} = 1$	650	0.0	0.16	3.8	2.6 ± 0.2
$f_{VBF} = 0$	950	0.19	0.0	2.6	0.4 ± 0.6
floating f_{VBF}	650	$2.9 imes10^{-6}$	0.16	3.8	2.4 ± 0.2

$H \rightarrow W^+ W^- \rightarrow e v \mu v$

- Production via ggF and VBF mechanisms treated separately
- Considers three scalars: NWA, Radion and GM scalar (VBF production only)
- Radions of mass lower than 1090 GeV are excluded

<u>CMS-HIG-21-003</u> Resolved <u>arXiv:2208.01469</u>

- Probes pseudoscalars with mass 15-62 GeV
- Well isolated photons in final state
- A parametrized signal model is built for each m_a hypothesis

INDIANA UNIVERSITY

 $CMS H \rightarrow AA \rightarrow \gamma \gamma \gamma \gamma$

Merged <u>arXiv:2209.06197</u> <u>CMS-HIG-21-016</u>

- $A \rightarrow \gamma \gamma$ relevant for $m_A < 1 \text{ GeV}$
- Distance between photons lower than Moliere radius of ECAL material
 - The two photons are reconstructed as a single photon-like object
- Best constraints for this decay mode in studied m_A range

- Covers range $15 < m_a < 62.5$ GeV
- Considers both ggF and VBF production mechanisms
- The compatibility of the *bb* and $\mu\mu$ systems with *a*, and of the $bb\mu\mu$ system with H is used to select the signal
- Events are categorized in terms of b-jet p_{T} , production mechanism and b-jet classification score

INDIANA UNIVERSITY

CMS $H \rightarrow aa \rightarrow \mu\mu bb$

CMS-HIG-21-021

ATLAS and CMS charged Higgs

H ±±

- Focus on H[±] production in association with a Top quark that decays hadronically and $m_H=200 \text{ GeV}$
- The mutually exclusive $e\tau_h$, $\mu\tau_h$, $e\tau_h\tau_h$ and $\mu\tau_h\tau_h$ final states are considered and the selection is optimized for each
- $T_h \tau_h$ final states provide the largest sensitivity, and addition of T_h improves the result by 20-35%

arXiv:2211.07505 EXOT-2018-34

- Doubly charged Higgs exist in type-II seesaw models, LRSMs, Zee-Babu neutrino mass model, and others.
 - Using DY production, type-II seesaw and Zee-Babu models can be used for

Analysis focuses on decays to a pair of leptons of the same charge assuming that all leptonic final states are equally possible

- Shape analysis using m(I^{±,}I^{±,})_{lead} is performed for 2- and 3-lepton category
- 4-lepton category as single bin fit

Observed (expected) limits

- LRMSs: 1080 (1065+30-50) GeV
- Zee-Babu: 900 (800+30-40) GeV

ATLAS heavy Higgs to bosons

arXiv:2211.02617 HDBS-2019-16

- Generic search in the $W^{\pm}H \rightarrow W^{\pm}W^{\pm}W^{\pm} \rightarrow I^{\pm}vI^{\pm}vjj$ final state with hadronic W decaying to resolved jets or a single large-R jet
- Lower SM background compared to other bosonic VH decay channels and sizeable $H \rightarrow WW$ BR yields highest sensitivity
- Production is described by an EFT Lagrangian that includes dimension-six operators with negligible $H \rightarrow Vh$ production

$$\begin{split} \mathcal{L}_{hWW}^{(4)} &= \rho_h g m_W h W^{\mu} W_{\mu}, \\ \mathcal{L}_{hZZ}^{(4)} &= \rho_h \frac{g m_W}{2 c_W^2} h Z^{\mu} Z_{\mu}, \\ \mathcal{L}_{HWW}^{(4)} &= \rho_H g m_W H W^{\mu} W_{\mu}, \\ \mathcal{L}_{HZZ}^{(4)} &= \rho_H \frac{g m_W}{2 c_W^2} H Z^{\mu} Z_{\mu}, \\ \mathcal{L}_{HZZ}^{(6)} &= \rho_H g m_W \frac{f_W}{2 \Lambda^2} \left(W_{\mu\nu}^+ W^{-\mu} \partial^{\nu} H + h.c. \right) - \rho_H g m_W \frac{f_{WW}}{\Lambda^2} W_{\mu\nu}^+ W^{-\mu\nu} H, \\ \mathcal{L}_{HZZ}^{(6)} &= \rho_H g m_W \frac{c_W^2 f_W + s_W^2 f_B}{2 c_W^2 \Lambda^2} Z_{\mu\nu} Z^{\mu} \partial^{\nu} H - \rho_H g m_W \frac{c_W^4 f_W W + s_W^4 f_{BB}}{2 c_W^2 \Lambda^2} Z_{\mu\nu}^2 Z_{\mu\nu}^2$$

ATLAS searches involving production of vector bosons

arXiv:2211.08945 EXOT-2020-15

Search for new physics in multi-body invariant masses

- Production of a Kaluza-Klein excitation of a gauge boson decaying into a radion and a SM W boson
- Assumes m_{Wkk} m_{ϕ} = 250 GeV to minimize signal peak width
- Larger mass differences result in larger neutrino p_T affecting m_{Wkk} reconstruction
- Three-body invariant mass distribution is tested for deviations in smoothly falling background
- Invariant masses *m_{jll}, m_{jjll}, m_{jbl}, m_{bbl}*, tested between 0.4 and 8 TeV
- Largest deviation observed at $m_{jj}=1.3$ TeV with local significance 3.5 σ and global significance 1.50

arXiv:2212.09649 HDBS-2019-13

- Search for dark photons in ZH production in dilepton final state
 - Coupling of $m_{H}=125$ GeV Higgs to dark photon with mass in range 0-40 GeV is studied
- Leptons are used as a handle for triggering on the signal events
- Transverse mass of $\gamma \gamma_D (\gamma E^T_{miss})$ system used as a variable of interest in ML-based classification
- Observed upper limits on BR(H $\rightarrow \gamma\gamma_D$) range from 2.17% to 2.52%

ATLAS search for *ttH/A* to *tttt* in multilepton final state

- Destructive interference effect in gg->A/H->ttbar can be avoided by looking at ttH/A production
- Focuses on events with two leptons of same charge or at least three leptons
- b-tagging provides important separation power for the MVA

arXiv:2211.01136 EXOT-2019-26

Higgs pair production

CMS searches for $X \rightarrow YH$

<u>CMS-PAS-HIG-21-011</u>

$X \rightarrow (H/Y)H \rightarrow bb\gamma\gamma$

- Model independent analysis using narrow with approximation for X
 - Interpreted in NMSSM and TRSM
- Resonance reconstructed from invariant mass of the two photons and the two b-jets
- Two-dimensional fit in $m_{jj}-m_{\gamma\gamma}$ plane

arXiv:2204.12413 CMS-B2G-21-003

$X \rightarrow YH \rightarrow bbbb$

- NMSSM and TRSM allow for such process
- Studies fully boosted topology with $Y \rightarrow bb$ and $H \rightarrow bb$ contained in single large-R jet
 - $M_X > M_Y + M_H$
 - $M_X >> M_Y, M_H$
 - $60 < M_Y < 600 \text{ GeV}$
- Makes use of ML-based <u>ParticleNet</u> algorithm to identify boosted decays against background

H-candidate ParticleNet score

CMS $HH \rightarrow WWWW, WWTT and TTTT$

- scenarios
- scenarios and for all seven final states

INDIANA UNIVERSITY

Vhh production in ATL, ...

- - is a narrow resonance

- be derived

INDIANA UNIVERSITY

Closing remarks

