

Third-Family Quark–Lepton Unification and Electroweak Precision Tests

Javier M. Lizana

Zurich University

In collaboration with L. Allwicher, G. Isidori, N. Selimovic, B.A. Stefanek

[2302.11584]

Rencontres de Physique de la Vallée d'Aoste - La Thuile - March 2023

4321 fermion content (I)

[Crosas, Isidori, JML, Selimović, Stefanek, 2203.01952]

4321 fermion content (II)

$$\begin{pmatrix} t_{R} \\ \nu_{R} \end{pmatrix} + \begin{pmatrix} q_{L}^{3} \\ c_{\chi}\ell_{L}^{3} + s_{\chi}L_{L}^{3} \end{pmatrix} + \begin{pmatrix} Q_{L} \\ c_{\chi}L_{L} - s_{\chi}\ell_{L}^{3} \end{pmatrix} \xrightarrow{\nu_{L}} \underbrace{\psi_{L}}_{\nu_{L}} \xrightarrow{\nu_{L}}_{\nu_{L}} \xrightarrow{\nu_{L}} \underbrace{\psi_{L}}_{\nu_{L}} \xrightarrow{\nu_{L}}_{\nu_{L}} \xrightarrow{\nu$$

[Crosas, Isidori, JML, Selimović, Stefanek, 2203.01952]

[Allwicher, Isidori, JML, Selimović, Stefanek, 2302.11584]

Relevant parameters for this analysis

Phenomenology

- $b \to c \tau \nu$ physics $(R_{D^{(*)}}, R_{\Lambda_c})$
- EWPO
- LFUV in τ decays
 [Allwicher, Isidori, Selimović, 2109.03833]
- High p_T at LHC
- Other $q_3 \rightarrow q_2$ transitions:
 - $B_s \to \tau \tau, B \to K \nu \nu, B \to K \tau \tau, B_s$ mixing, etc...

[Cornella, Faroughy, Fuentes-Martin, Isidori, Neubert, 2103.16558]

- $q_2 \rightarrow q_1$ transitions:
 - $K \rightarrow \pi \nu \nu$, K, D mixing

[Crosas, Isidori, JML, Selimović, Stefanek, 2203.01952]

[Crosas, Isidori, JML, Selimović, Stefanek, 2203.01952]

SMEFT

• One-loop matching in g_4 , Y_+ , y_t , g_s to the relevant SMEFT operators:

Tree level matching:

- Running at one loop from UV scale to EW.
- To keep consistency with the one-loop matching, calculation of the EW observables at one-loop in y_t , g_s :

EW: Universal contributions

EW: Universal contributions

VLF sector

Coloron sector

EW: Non-Universal contributions

Global fit

• Global likelihood:

$$\chi^2 = \chi^2_{b \to c \tau \nu} + \chi^2_{\text{EWPO}} + \chi^2_{\tau\text{-LFU}} + \chi^2_{\text{high-}p_T}$$

• Fixed parameters:

$$\chi = 60^{\circ}, m_L = 1 \text{ TeV}, m_R = 1.5 \text{ TeV}, m_U = 3 \text{ TeV}, m_{G'} = 3.5 \text{ TeV}, m_{Z'} = 3 \text{ TeV}$$

• Two fits:

 m_W without CDF $m_W^{\text{exp}} = (80.379 \pm 0.012) \text{GeV}$

Parameter	Best-fit point	1σ interval
Λ_U	$1.61 { m ~TeV}$	[1.46, 1.86] TeV
m_Q	$m_Q o \infty$	$[2.31,\infty)$ TeV
Y_+	0.36	[0.26, 0.56]

$$\chi_{\rm SM}^2 - \chi_{\rm BFP}^2 = 12.3 \ (2.4\sigma)$$

 m_W with CDF

$$m_W^{\text{exp}} = (80.410 \pm 0.015) \text{GeV}$$

Parameter	Best-fit point	1σ interval
Λ_U	$1.46 { m TeV}$	[1.32, 1.68] TeV
m_Q	$2.08 { m ~TeV}$	[1.43, 4.72] TeV
Y_+	0.65	[0.43, 0.83]

$$\chi^2_{\rm SM} - \chi^2_{\rm BFP} = 15.4 \ (2.9\sigma)$$

[Allwicher, Isidori, JML, Selimović, Stefanek, 2302.11584]

Global fit

 m_W with CDF

Conclusions

- Quark-lepton unification of the third family at the TeV scale could be the infrared limit of a natural solution to the flavor puzzle.
- Apart from a rich B-physics pheno, the model has an interesting impact on EW physics.
- We find that the new colored states generate large universal contributions at the loop level.
- Higher order effects can play a key role.
- These results have a wider range of applicability: VLF, extended gauge groups, or inverse-seesaw mechanism.

Thank you!

Backup: Global fit

[Allwicher, Isidori, JML, Selimović, Stefanek, 2302.11584]

 m_W with CDF

Backup: Other EW observables

Backup: EW observables

Observable	Experimental value	SM prediction	Definition
Γ_Z [GeV]	$2.4955 \pm 0.0023 \ \ [4,\ 28]$	2.4941	$\sum_{f} \Gamma(Z \to f\bar{f})$
$\sigma_{ m had} \ [m nb]$	41.4802 ± 0.0325 [4, 28]	41.4842	$\frac{12\pi}{m_Z^2} \frac{\Gamma(Z \to e^+ e^-) \Gamma(Z \to q\bar{q})}{\Gamma_Z^2}$
R_e	20.804 ± 0.050 [4]	20.734	$rac{\sum_{q} \Gamma(Z ightarrow q ar{q})}{\Gamma(Z ightarrow e^+ e^-)}$
R_{μ}	20.785 ± 0.033 [4]	20.734	$rac{\sum_{q} \Gamma(Z ightarrow q ar{q})}{\Gamma(Z ightarrow \mu^{+} \mu^{-})}$
R_{τ}	20.764 ± 0.045 [4]	20.781	$\frac{\sum_{q} \Gamma(Z \to qq)}{\Gamma(Z \to \tau^+ \tau^-)}$
$A^{0,e}_{ m FB}$	0.0145 ± 0.0025 [4]	0.0162	$rac{3}{4}A_e^2$
$A^{0,\mu}_{ m FB}$	0.0169 ± 0.0013 [4]	0.0162	$rac{3}{4}A_eA_\mu$
$A^{0, au}_{ m FB}$	0.0188 ± 0.0017 [4]	0.0162	$rac{3}{4}A_eA_ au$
R_b	0.21629 ± 0.00066 [4]	0.21581	$\frac{\Gamma(Z \rightarrow b\bar{b})}{\sum_{q} \Gamma(Z \rightarrow q\bar{q})}$
R_c	0.1721 ± 0.0030 [4]	0.17222	$rac{\Gamma(Z ightarrow car{c})}{\sum_q \Gamma(Z ightarrow qar{q})}$
$A_b^{ m FB}$	$0.0996 \pm 0.0016 \;\; [4, 29]$	0.1032	$rac{3}{4}A_eA_b$
$A_c^{ m FB}$	0.0707 ± 0.0035 [4]	0.0736	$rac{3}{4}A_eA_c$
A_e	0.1516 ± 0.0021 [4]	0.1470	$\frac{\Gamma(Z \rightarrow e_L^+ e_L^-) - \Gamma(Z \rightarrow e_R^+ e_R^-)}{\Gamma(Z \rightarrow e^+ e^-)}$
A_{μ}	0.142 ± 0.015 [4]	0.1470	$\frac{\Gamma(Z \to \mu_L^+ \mu_L^-) - \Gamma(Z \to \mu_R^+ \mu_R^-)}{\Gamma(Z \to \mu^+ \mu^-)}$
$A_{ au}$	0.136 ± 0.015 [4]	0.1470	$\frac{\Gamma(Z \to \tau_L^+ \tau_L^-) - \Gamma(Z \to \tau_R^+ \tau_R^-)}{\Gamma(Z \to \tau^+ \tau^-)}$
A_e	0.1498 ± 0.0049 [4]	0.1470	$\frac{\Gamma(Z \rightarrow e_L^+ e_L^-) - \Gamma(Z \rightarrow e_R^+ e_R^-)}{\Gamma(Z \rightarrow e^+ e^-)}$
$A_{ au}$	0.1439 ± 0.0043 [4]	0.1470	$\frac{\Gamma(Z \to \tau_L^+ \tau_L^-) - \Gamma(Z \to \tau_R^+ \tau_R^-)}{\Gamma(Z \to \tau^+ \tau^-)}$
A_b	0.923 ± 0.020 [4]	0.935	$\frac{\Gamma(Z \to b_L b_L) - \Gamma(Z \to b_R b_R)}{\Gamma(Z \to b\bar{b})}$
A_c	0.670 ± 0.027 [4]	0.668	$\frac{\Gamma(Z \to c_L \bar{c}_L) - \Gamma(Z \to c_R \bar{c}_R)}{\Gamma(Z \to c\bar{c})}$
A_s	0.895 ± 0.091 [30]	0.936	$\frac{\Gamma(Z \to s_L s_L) - \Gamma(Z \to s_R \bar{s}_R)}{\Gamma(Z \to s\bar{s})}$
R_{uc}	0.166 ± 0.009 [9]	0.1722	$\frac{\Gamma(Z \to uu) + \Gamma(Z \to cc)}{2\sum_{q} \Gamma(Z \to q\bar{q})}$

Observable	Experimental value	SM prediction
$m_W \; [\text{GeV}]$	80.379 ± 0.012 [9]	80.356
Γ_W [GeV]	2.085 ± 0.042 [9]	2.088
$\operatorname{Br}(W \to e\nu)$	0.1071 ± 0.0016 [5]	0.1082
${ m Br}(W o \mu u)$	0.1063 ± 0.0015 [5]	0.1082
$\operatorname{Br}(W \to \tau \nu)$	0.1138 ± 0.0021 [5]	0.1081
$Br(W \to \mu \nu)/Br(W \to e \nu)$	0.982 ± 0.024 [32]	1.000
$Br(W \to \mu \nu)/Br(W \to e \nu)$	1.020 ± 0.019 [12]	1.000
$Br(W \to \mu \nu)/Br(W \to e \nu)$	1.003 ± 0.010 [13]	1.000
$Br(W \to \tau\nu)/Br(W \to e\nu)$	$0.961 \pm 0.061 \; [9, 31]$	0.999
$Br(W \to \tau \nu)/Br(W \to \mu \nu)$	0.992 ± 0.013 [14]	0.999
$R_{Wc} \equiv \frac{\Gamma(W \to cs)}{\Gamma(W \to ud) + \Gamma(W \to cs)}$	0.49 ± 0.04 [9]	0.50

Backup: Running

$$\mathcal{A}(\mu) = \frac{y_t(\mu)^2}{16\pi^2} \mathcal{A}_t + \frac{g_s(\mu)^2}{16\pi^2} \mathcal{A}_s + \frac{g_L(\mu)^2}{16\pi^2} \mathcal{A}_L + \dots$$
$$\mu \frac{d}{\mu} \mathcal{C}(\mu) = \mathcal{A}(\mu) \mathcal{C}(\mu)$$

• Integration:

RGE:

ullet

$$\mathcal{C}(\mu) = \mathcal{P} \int_{\mu_0}^{\mu} \exp \mathcal{A}(\mu) \, d\log \mu \, \mathcal{C}(\mu_0)$$

= $\left(\mathbb{1} + \int_{\mu_0}^{\mu} d\log \mu \, \mathcal{A}(\mu) + \int_{\mu_0}^{\mu} d\log \mu_1 \int_{\mu_0}^{\mu_1} d\log \mu_2 \mathcal{A}(\mu_1) \mathcal{A}(\mu_2) + \dots \right) \mathcal{C}(\mu_0)$

• Top Yukawa running: $\mathcal{C}(\mu) - \mathcal{C}(\mu_0) = \frac{1}{16\pi^2} \mathcal{A}_t \mathcal{C}(\mu_0) \int_{\mu_0}^{\mu} y_t(\mu)^2 d\log \mu$

$$= \frac{\bar{y}_t^2}{16\pi^2} \mathcal{A}_t \mathcal{C}(\mu_0) \log \frac{\mu}{\mu_0} \,,$$

$$\bar{y}_t^2 = \frac{1}{\log \frac{\mu}{\mu_0}} \int_{\mu_0}^{\mu} d\log \mu' \, y_t^2(\mu') \qquad \Longrightarrow \qquad \bar{y}_t \approx 0.87$$

Backup: $R_{K^{(*)}}$

Backup: $R_{D^{(*)}}$

Backup: $b \rightarrow s \mu \mu$

$$B \to K^* \mu \mu$$

$$\mathscr{L} \supset \frac{2}{v^2} V_{ts}^* V_{tb} C_9(\bar{s}_L \gamma^\mu b_L)(\mu \gamma_\mu \mu)$$
$$C_9^{\text{NP}} = -0.75 \pm 0.23 \quad (\sim 3.4\sigma)$$

Backup: Flavor bounds on NP

Observable

[Physics Briefing Book, 1910.11775]

[Dvali, Shiftman, <u>hep-ph/0001072</u>,Panico, Pomarol, <u>1603.06609</u>; Bordone, Cornella, Fuentes-Martin, Isidori, <u>1712.01368</u>; Barbieri, <u>2103.15635</u>] Backup: Multiscale flavor

 Safe solution to the flavor puzzle: multiscale origin of the flavor hierarchies.

[Bordone, Cornella, Fuentes-Martin, Isidori, <u>1712.01368</u>]

[Fuentes-Martin, Isidori, JML, Selimovic, Stefanek, 2203.01952]

Backup: Composite models

• Example in composite models/RS:

Backup: Deconstructing flavor

Backup: Deconstructing flavor

Backup: Deconstructing flavor

Only rotations in the LH sector
 No RH or scalar
 FCNC

[Crosas, Isidori, JML, Selimović, Stefanek, 2203.01952]

Backup: Gauge deconstruction

• From the TeV scale, we see...

• Emerging flavor symmetry:

(Only broken minimally in the LH sector)

Backup: Gauge deconstruction

• From the TeV scale, we see...

• Emerging flavor symmetry:

(Only broken minimally in the LH sector)