Third-Family Quark-Lepton Unification and Electroweak Precision Tests

Javier M. Lizana

Zurich University
In collaboration with L. Allwicher, G. Isidori, N. Selimovic, B.A. Stefanek
[2302.11584]

Rencontres de Physique de la Vallée d'Aoste - La Thuile - March 2023

4321 model

Cornella, Fuentes-Martin, Isidori 1903.11517]

$$
\stackrel{\cup}{U(1)_{(B-L)_{h}}} \stackrel{\stackrel{\downarrow}{1})_{Y}^{k+}}{U(}
$$

$$
+\begin{aligned}
& U_{1} \sim(\mathbf{3}, \mathbf{1})_{2 / 3} \\
& G^{\prime} \sim(\mathbf{8}, \mathbf{1})_{0} \\
& Z^{\prime} \sim(\mathbf{1}, \mathbf{1})_{0}
\end{aligned}
$$

Accidental $U(2)$ flavor symmetry

LHC bounds:
$M_{G^{\prime}} \gtrsim 3-3.5 \mathrm{TeV}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Third-family quar } \\
S U(3)_{h} \rightarrow S U(3)_{c}
\end{array}
\end{aligned}
$$

[Cornella, Faroughy, Fuentes-Martin, Isidori, Neubert, 2103.16558]

4321 fermion content (I)

1st \& 2nd families

$$
q_{L}^{1,2}, \ell_{L}^{1,2} \quad u_{R}^{1,2} \quad d_{R}^{1,2}, e_{R}^{1,2}
$$

3rd family $\quad \psi_{L} \sim\binom{q_{L}^{3}}{\ell_{L}^{3}} \quad \psi_{R}^{+} \sim\binom{u_{R}^{3}}{\nu_{R}^{3}} \quad \psi_{R}^{-} \sim\binom{d_{R}^{3}}{e_{R}^{3}}$

4321 fermion content (II)

$$
\begin{aligned}
\nu_{L}^{3} & \rightarrow c_{\nu} \nu_{L}^{3}+s_{\nu} S_{L} \\
\left(s_{\nu}\right. & \left.=y_{\nu} v_{\mathrm{EW}} / m_{R}\right)
\end{aligned}
$$

Relevant parameters for this analysis

- $\Lambda_{U} \longrightarrow \sqrt{2} m_{U_{1}} / g_{4}$
- $Y_{+}, s_{q} \longrightarrow$
- $\chi \longrightarrow \begin{gathered}3-\mathrm{VLF} \\ \text { mixing }\end{gathered}$
- $m_{Q, L} \longrightarrow$ 2, L
- $m_{R} \longrightarrow\left(\nu_{R}, S_{L}\right)$
$\cdot m_{U_{1}, G^{\prime}, Z^{\prime}} \longrightarrow U_{1}, G^{\prime}, Z^{\prime}$

Phenomenology

- $b \rightarrow c \tau \nu$ physics $\left(R_{D^{(*)}}, R_{\Lambda_{c}}\right)$
- EWPO
- LFUV in τ decays
[Allwicher, Isidori, Selimović, 2109.03833]
- $\operatorname{High} p_{T}$ at LHC
- Other $q_{3} \rightarrow q_{2}$ transitions:
- $B_{s} \rightarrow \tau \tau, B \rightarrow K \nu \nu, B \rightarrow K \tau \tau, B_{s}$ mixing, etc \ldots
[Cornella, Faroughy, Fuentes-Martin, Isidori, Neubert, 2103.16558]
- $q_{2} \rightarrow q_{1}$ transitions:
- $K \rightarrow \pi \nu \nu, K, D$ mixing

[Crosas, Isidori, JML, Selimović, Stefanek, 2203.01952]

Phenomenology

- $b \rightarrow c \tau \nu$ physics $\left(R_{D^{(*)}}, R_{\Lambda_{c}}\right)$
- EWPO
- LFUV in τ decays
[Allwicher, Isidori, Selimović, 2109.03833]
- $\operatorname{High} p_{T}$ at LHC
- Other $q_{3} \rightarrow q_{2}$ transitions:
- $B_{s} \rightarrow \tau \tau, B \rightarrow K \nu \nu, B \rightarrow K \tau \tau, B_{s}$ mixing, etc \ldots
[Cornella, Faroughy, Fuentes-Martin, Isidori, Neubert, 2103.16558]
- $q_{2} \rightarrow q_{1}$ transitions:
- $K \rightarrow \pi \nu \nu, K, D$ mixing

[Crosas, Isidori, JML, Selimović, Stefanek, 2203.01952]

$b \rightarrow c \tau \nu$ data

$b \rightarrow c \tau \nu$ data

$$
\Lambda_{U}=\sqrt{2} m_{U_{1}} / g_{4}=1.5 \mathrm{TeV}
$$

s_{q}

SMEFT

- One-loop matching in $g_{4}, Y_{+}, y_{t}, g_{s}$ to the relevant SMEFT operators:

Tree level matching:

$\rightarrow C_{f f}\left(\bar{f}^{3} f^{3}\right)\left(\bar{f}^{3} f^{3}\right)$

$$
\begin{aligned}
& \rightarrow C_{\text {Hu }}\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{t}_{R} \gamma^{\mu} t_{R}\right) \quad \rightarrow C_{H \ell}\left(\left(H^{\star} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e}_{L}^{3} \gamma^{\mu} \ell_{L}^{3}\right)\right. \\
&\left.-\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{t} H\right)\left(\bar{e}_{L}^{3} \tau_{1} \gamma^{\mu} \ell_{L}^{3}\right)\right)
\end{aligned}
$$

- Running at one loop from UV scale to EW.
- To keep consistency with the one-loop matching, calculation of the EW observables at one-loop in y_{t}, g_{s} :

EW: Universal contributions

$\left(C_{H u} \rightarrow C_{H D}\right)$ + 1-loop matching

$$
C_{u u}+C_{q q} \rightarrow C_{H u}+C_{H q}^{(1)} \rightarrow C_{H D}
$$

EW: Universal contributions

VLF sector
Coloron sector

EW: Non-Universal contributions

$$
\mathscr{L} \supset C_{H l}^{(1)}\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{\ell}_{L}^{3} \gamma^{\mu} \ell_{L}^{3}\right)+C_{H l}^{(3)}\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right)\left(\bar{\ell}_{L}^{3} \tau_{l} \gamma^{\mu} \ell_{L}^{3}\right)
$$

$$
\left(y_{\nu}=c_{\chi} y_{t}-s_{\chi} Y_{+}\right)
$$

Tree-level +LL running $\left(C_{H \ell} \rightarrow C_{H \ell}\right)$

$$
\begin{array}{cc}
C_{H \ell}^{(1)}=-C_{H \ell}^{(3)} & \text { (Only broken by small } g_{2} \text { effects } \\
\text { and negligible NLL) }
\end{array}
$$

[Allwicher, Isidori, Selimović, 2109.03833]

Global fit

- Global likelihood:

$$
\chi^{2}=\chi_{b \rightarrow c \tau \nu}^{2}+\chi_{\mathrm{EWPO}}^{2}+\chi_{\tau-\mathrm{LFU}}^{2}+\chi_{\mathrm{high}-p_{T}}^{2}
$$

- Fixed parameters:

$$
\chi=60^{\circ}, m_{L}=1 \mathrm{TeV}, m_{R}=1.5 \mathrm{TeV}, m_{U}=3 \mathrm{TeV}, m_{G^{\prime}}=3.5 \mathrm{TeV}, m_{Z^{\prime}}=3 \mathrm{TeV}
$$

- Two fits:

m_{W} without CDF			m_{W} with CDF		
$m_{W}^{\exp }=(80.379 \pm 0.012) \mathrm{GeV}$			$m_{W}^{\exp }=(80.410 \pm 0.015) \mathrm{GeV}$		
Parameter	Best-fit point	1σ interval	Parameter	\|Best-fit point \mid	1σ interval
Λ_{U}	1.61 TeV	[1.46, 1.86] TeV	Λ_{U}	1.46 TeV	$[1.32,1.68] \mathrm{TeV}$
m_{Q}	$m_{Q} \rightarrow \infty$	$[2.31, \infty) \mathrm{TeV}$	m_{Q}	2.08 TeV	[1.43, 4.72] TeV
Y_{+}	0.36	[0.26, 0.56]	Y_{+}	0.65	[0.43, 0.83]
$\chi_{\mathrm{SM}}^{2}-\chi_{\mathrm{BFP}}^{2}=12.3(2.4 \sigma)$			$\chi_{\mathrm{SM}}^{2}-\chi_{\mathrm{BFP}}^{2}=15.4(2.9 \sigma)$		

$$
y_{\nu}=y_{t} \cos (\chi)-Y_{+} \sin (\chi)
$$

Global fit

m_{W} without CDF
95% CL CMS $p p \rightarrow \tau \tau$

Global fit

Conclusions

- Quark-lepton unification of the third family at the TeV scale could be the infrared limit of a natural solution to the flavor puzzle.
- Apart from a rich B-physics pheno, the model has an interesting impact on EW physics.
- We find that the new colored states generate large universal contributions at the loop level.
- Higher order effects can play a key role.
- These results have a wider range of applicability: VLF, extended gauge groups, or inverse-seesaw mechanism.

Thank you!

Backup: Global fit

m_{W} with CDF

Backup: Other EW observables

Backup: EW observables

Observable	Experimental value	SM prediction	Definition
$\Gamma_{Z}[\mathrm{GeV}]$	2.4955 ± 0.0023 [4, 28]	2.4941	$\sum_{f} \Gamma(Z \rightarrow f \bar{f})$
$\sigma_{\text {had }}$ [nb]	$41.4802 \pm 0.0325 \quad[4,28]$	41.4842	$\frac{12 \pi}{m_{Z}^{2}} \frac{\Gamma\left(Z \rightarrow e^{+} e^{-}\right) \Gamma(Z \rightarrow q \bar{q})}{\Gamma_{Z}^{2}}$
R_{e}	20.804 ± 0.050 [4]	20.734	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}$
R_{μ}	20.785 ± 0.033 [4]	20.734	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}$
R_{τ}	20.764 ± 0.045 [4]	20.781	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)}$
$A_{\text {FB }}^{0, e}$	0.0145 ± 0.0025 [4]	0.0162	$\frac{3}{4} A_{e}^{2}$
$A_{\text {FB }}^{0, \mu}$	0.0169 ± 0.0013 [4]	0.0162	${ }_{1}^{3} A_{e} A_{\mu}$
$A_{\mathrm{FB}}^{0, \tau}$	0.0188 ± 0.0017 [4]	0.0162	$\frac{3}{4} A_{e} A_{\tau}$
R_{b}	0.21629 ± 0.00066 [4]	0.21581	$\frac{\Gamma(Z \rightarrow b \bar{b})}{\sum_{\Gamma} \Gamma(Z \rightarrow q \bar{q})}$
R_{c}	$0.1721 \pm 0.0030 \quad[4]$	0.17222	$\sum_{q}(Z(Z \rightarrow q \bar{q})$ $\Gamma(Z \rightarrow c \bar{c})$ $\left.\sum \Gamma(Z) q \bar{q}\right)$
		0.1722	$\sum_{q} \Gamma(Z \rightarrow q \bar{q})$
A_{b}	0.0996 ± 0.0016 [4, 29]	0.1032	${ }_{3}^{3} A_{e} A_{b}$
$A_{c}^{\text {FB }}$	$0.0707 \pm 0.0035 \quad[4]$	0.0736	$\frac{3}{4} A_{e} A_{c}$
A_{e}	0.1516 ± 0.0021 [4]	0.1470	$\frac{\Gamma\left(Z \rightarrow e_{L}^{+} e_{L}^{-}\right)-\Gamma\left(Z \rightarrow e_{R}^{+} e_{R}^{-}\right)}{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}$
A_{μ}	0.142 ± 0.015 [4]	0.1470	$\Gamma\left(Z \rightarrow \mu_{L}^{+} \mu_{L}^{-}\right)-\Gamma\left(Z \rightarrow \mu_{R}^{+} \mu_{R}^{-}\right)$
A_{μ}		0.1470	$\begin{gathered} \Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right) \\ \Gamma\left(Z \rightarrow \tau_{L}^{+} \tau_{L}^{-}\right)-\Gamma\left(Z \rightarrow \tau_{R}^{+} \tau_{R}^{-}\right) \end{gathered}$
A_{τ}	0.136 ± 0.015 [4]	0.1470	
A_{e}	0.1498 ± 0.0049 [4]	0.1470	$\frac{\Gamma\left(Z \rightarrow e_{L}^{+} e_{L}^{-}\right)-\Gamma\left(Z \rightarrow e_{R}^{+} e_{R}^{-}\right)}{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}$
A_{τ}	0.1439 ± 0.0043 [4]	0.1470	$\frac{\Gamma\left(Z \rightarrow \tau_{L}^{+} \tau_{L}^{-}\right)-\Gamma\left(Z \rightarrow \tau_{R}^{+} \tau_{R}^{-}\right)}{\Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)}$
	$0.923 \pm 0.020 \quad[4]$	0.935	$\frac{\Gamma\left(Z \rightarrow b_{L} b_{L}\right)-\Gamma\left(Z \rightarrow b_{R} b_{R}\right)}{\Gamma(Z) b \bar{b}}$
A_{c}	0.670 ± 0.027 [4]		
A_{c}	0.670 ± 0.027 [4]	0.668	$\frac{\Gamma(Z)}{\Gamma(Z \rightarrow c \bar{c})}$
A_{s}	0.895 ± 0.091 [30]	0.936	$\frac{\Gamma\left(Z \rightarrow s_{L} \bar{s}_{L}\right)-\Gamma\left(Z \rightarrow s_{R} \bar{s}_{R}\right)}{\Gamma(Z \rightarrow s \bar{s})}$
$R_{u c}$	0.166 ± 0.009 [9]	0.1722	$\frac{\Gamma(Z \rightarrow u \bar{u})+\Gamma(Z \rightarrow c \bar{c})}{2 \sum_{q} \Gamma(Z \rightarrow q \bar{q})}$

Observable	Experimental value	SM prediction
$m_{W}[\mathrm{GeV}]$	$80.379 \pm 0.012[9]$	80.356
$\Gamma_{W}[\mathrm{GeV}]$	$2.085 \pm 0.042[9]$	2.088
$\operatorname{Br}(W \rightarrow e \nu)$	$0.1071 \pm 0.0016[5]$	0.1082
$\operatorname{Br}(W \rightarrow \mu \nu)$	$0.1063 \pm 0.0015[5]$	0.1082
$\operatorname{Br}(W \rightarrow \tau \nu)$	$0.1138 \pm 0.0021[5]$	0.1081
$\operatorname{Br}(W \rightarrow \mu \nu) / \operatorname{Br}(W \rightarrow e \nu)$	$0.982 \pm 0.024[32]$	1.000
$\operatorname{Br}(W \rightarrow \mu \nu) / \operatorname{Br}(W \rightarrow e \nu)$	$1.020 \pm 0.019[12]$	1.000
$\operatorname{Br}(W \rightarrow \mu \nu) / \operatorname{Br}(W \rightarrow e \nu)$	$1.003 \pm 0.010[13]$	1.000
$\operatorname{Br}(W \rightarrow \tau \nu) / \operatorname{Br}(W \rightarrow e \nu)$	$0.961 \pm 0.061[9,31]$	0.999
$\operatorname{Br}(W \rightarrow \tau \nu) / \operatorname{Br}(W \rightarrow \mu \nu)$	$0.992 \pm 0.013[14]$	0.999
$R_{W c} \equiv \frac{\Gamma(W \rightarrow c s)}{\Gamma(W \rightarrow u d)+\Gamma(W \rightarrow c s)}$	$0.49 \pm 0.04[9]$	0.50

[V. Breso-Pla, A. Falkowski, M. Gonzalez-Alonso, 2103.12074]

Backup: Running

$$
\mathcal{A}(\mu)=\frac{y_{t}(\mu)^{2}}{16 \pi^{2}} \mathcal{A}_{t}+\frac{g_{s}(\mu)^{2}}{16 \pi^{2}} \mathcal{A}_{s}+\frac{g_{L}(\mu)^{2}}{16 \pi^{2}} \mathcal{A}_{L}+\ldots
$$

- RGE: $\quad \mu \frac{d}{\mu} \mathcal{C}(\mu)=\mathcal{A}(\mu) \mathcal{C}(\mu)$
- Integration:

$$
\begin{aligned}
\mathcal{C}(\mu) & =\mathcal{P} \int_{\mu_{0}}^{\mu} \exp \mathcal{A}(\mu) d \log \mu \mathcal{C}\left(\mu_{0}\right) \\
& =\left(\mathbb{1}+\int_{\mu_{0}}^{\mu} d \log \mu \mathcal{A}(\mu)+\int_{\mu_{0}}^{\mu} d \log \mu_{1} \int_{\mu_{0}}^{\mu_{1}} d \log \mu_{2} \mathcal{A}\left(\mu_{1}\right) \mathcal{A}\left(\mu_{2}\right)+\ldots\right) \mathcal{C}\left(\mu_{0}\right)
\end{aligned}
$$

- Top Yukawa running: $\quad \mathcal{C}(\mu)-\mathcal{C}\left(\mu_{0}\right)=\frac{1}{16 \pi^{2}} \mathcal{A}_{t} \mathcal{C}\left(\mu_{0}\right) \int_{\mu_{0}}^{\mu} y_{t}(\mu)^{2} d \log \mu$

$$
\begin{aligned}
& =\frac{\bar{y}_{t}^{2}}{16 \pi^{2}} \mathcal{A}_{t} \mathcal{C}\left(\mu_{0}\right) \log \frac{\mu}{\mu_{0}}, \\
\bar{y}_{t}^{2}=\frac{1}{\log \frac{\mu}{\mu_{0}}} \int_{\mu_{0}}^{\mu} d \log \mu^{\prime} y_{t}^{2}\left(\mu^{\prime}\right) \quad & \quad \bar{y}_{t} \approx 0.87
\end{aligned}
$$

Backup: $R_{\left.K^{*}\right)}$

$$
R_{K^{(*)}}=\frac{\operatorname{Br}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\operatorname{Br}\left(B \rightarrow K^{(*)} e e\right)}
$$

Backup: $R_{D^{(*)}}$

$$
s_{q} \tan (\chi)=0.1 \approx 2.4 V_{c b}
$$

Backup: $b \rightarrow s \mu \mu$

$$
B \rightarrow K^{*} \mu \mu
$$

$$
\begin{array}{r}
\mathscr{L} \supset \frac{2}{v^{2}} V_{t s}^{*} V_{t b} C_{9}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\mu \gamma_{\mu} \mu\right) \\
C_{9}^{\mathrm{NP}}=-0.75 \pm 0.23(\sim 3.4 \sigma)
\end{array}
$$

$\sim \frac{s_{q}}{\Lambda_{U}^{2}} \times$ loop \quad (Universal)

$$
\sim \frac{s_{q} s_{l}^{2}}{\Lambda_{U}^{2}}
$$

$b \rightarrow c \tau \nu$ preferred regions for $s_{q} \tan (\chi)=0.1$

Backup: Flavor bounds on NP

Observable

Backup: Multiscale flavor

- Safe solution to the flavor puzzle: multiscale origin of the flavor hierarchies.

Backup: Composite models

- Example in composite models/RS:

$\underset{\text { Dangerous dipoles (among others) }}{\text { generated at the IR scale }} \sim \frac{g_{*}^{2}}{16 \pi^{2}} \frac{m_{e}}{\Lambda_{\mathrm{IR}}^{2}} \bar{e}_{L} \sigma_{\mu \nu} e_{R} F^{\mu \nu}$

Backup: Deconstructing flavor

(Universal)

Backup: Deconstructing flavor

Backup: Deconstructing flavor

- Only rotations in the LH sector

No RH or scalar FCNC

[Crosas, Isidori, JML, Selimović, Stefanek, 2203.01952]

Backup: Gauge deconstruction

- From the TeV scale, we see...

- Emerging flavor symmetry:

$$
U(2)
$$

(Only broken minimally in the LH sector)

Backup: Gauge deconstruction

- From the TeV scale, we see...

- Emerging flavor symmetry:

$$
U(2)
$$

(Only broken minimally in the LH sector)

