Standard Model predictions for the W boson mass

Luca Rottoli

University of Zurich^{UZH}

SWISS NATIONAL SCIENCE FOUNDATION

The discovery of the Higgs boson and the measurement of its mass allow for the prediction of the W mass with high precision

 $m_W = 80.350 \pm 8 \,\mathrm{GeV}$

Which is in a 2σ agreement with the experimental average (pre-CDF II)

 $m_W = 80.385 \pm 15 \,\mathrm{GeV}$

[de Blas, Pierini, Reina, Silvestrini '22]

The discovery of the Higgs boson and the measurement of its mass allow for the prediction of the *W* mass with high precision

$$m_W = 80.350 \pm 8 \,\mathrm{GeV}$$

Which is in a 2σ agreement with the experimental average (pre-CDF II)

$$m_W = 80.385 \pm 15 \,\mathrm{GeV}$$

Both results are in significant tension with the CDF measurement

$$m_W = 80.433 \pm 9 \,\mathrm{GeV}$$

Full kinematics of **charged DY production** is not accessible at hadron colliders; in particular, the invariant mass of the neutrino-lepton pair cannot be reconstructed

Reconstruction possible in the transverse plane (requires precise measurement of the hadronic recoil) such as the lepton transverse momentum p_T^{ℓ} or the transverse mass $M_{\perp}^{\ell\nu} = \sqrt{2p_{\perp}^{\ell}p_{\perp}^{\nu}(1 - \cos \Delta \phi_{\ell\nu})}$

$$\frac{d\sigma}{d|p_{\perp}^{\ell}|^{2}} \sim \frac{1}{\sqrt{1 - 4\frac{|p_{\perp}^{\ell}|^{2}}{\hat{s}}}} \sim \frac{1}{\sqrt{1 - 4\frac{|p_{\perp}^{\ell}|^{2}}{m_{W}^{2}}}} \qquad \text{Jacobian peak at } p_{\perp}^{\ell} \sim m_{W}/2$$

Enhanced sensitivity to m_W in both distributions at the $\mathcal{O}(10^{-3}) - \mathcal{O}(10^{-2})$ level.

Precise determinations of the W mass exploit observables with high sensitivity to small variations $\mathcal{O}(10^{-4})$ of m_{W}

Measurements of m_W at hadron colliders

Different sensitivity to experimental uncertainties and quality of theoretical modelling

Measurements of m_W at hadron colliders

Different sensitivity to experimental uncertainties and quality of theoretical modelling

Description of the data requires:

• Modelling of IS QCD + FS QED radiation

Different sensitivity to experimental uncertainties and quality of theoretical modelling

Description of the data requires:

- Modelling of **IS QCD + FS QED radiation**

• Modelling of the smearing of the distributions due to the reconstruction of the neutrino in the transverse plane

Different sensitivity to experimental uncertainties and quality of theoretical modelling

Mostly QCD + QED radiation

Rencontres de La Thuile, 9 Mar 2023

Mostly **detector effects**

$$M_{\perp}^{\ell\nu} = \sqrt{2p_{\perp}^{\ell}p_{\perp}^{\nu}(1 - \cos\Delta\phi_{\ell\nu})}$$

Requires precise determination of the neutrino transverse momentum: **challenging at the LHC** due to worse control of the hadronic recoil

Measurements of m_W at hadron colliders: template fitting

Extraction of m_W performed by template fittings of relevant kinematic observables e.g. lepton transverse momentum p_{\perp}^{ℓ}

- Compute theoretical distributions for different values of $m_W^{(k)}$
- 2. For each hypothesis, compute a figure of merit χ_k^2 for a defined window in $p_{\perp}^{\ell} m_W$
- 3. The minimum value of χ_k^2 defines the experimental value of m_W

Permille-level control of the shape is necessary to obtain m_W with 10⁻⁴ precision

The **description of experimental data** plays a crucial role

Precise control of the associated theoretical uncertainties needed to assess the theoretical systematic error on m_W

Template fitting and tuning

PHYSICAL REVIEW LETTERS 128, 252001 (2022)

5

Template fitting procedure requires that the theoretical distribution can describe the data with high quality

Precision physics at the LHC: theory

 $\sigma(s,Q^2) = \sum_{a,b} \int dx_1 dx_2 f_{a/h_1}(x_1,Q^2) f_{b/h_2}(x_2,Q^2) \hat{\sigma}_{ab \to X}(Q^2, x_1 x_2 s) + \mathcal{O}(\Lambda_{\text{QCD}}^p/Q^p)$ Input parameters: few percent strong coupling α_s uncertainty; improvable **PDFs**

Rencontres de La Thuile, 9 Mar 2023

Non-perturbative effects

percent effect; not yet under full control

Precision physics at the LHC: fixed order computations

 $\sigma(s,Q^2) = \sum_{a,b} \int dx_1 dx_2 f_{a/h_1}(x_1,Q^2) f_{b/h_2}(x_2,Q^2) \hat{\sigma}_{ab \to X}(Q^2, x_1 x_2 s) + \mathcal{O}(\Lambda_{\text{QCD}}^p/Q^p)$

$\tilde{\sigma} = 1 + \alpha_s \tilde{\sigma}_1 + \alpha_s^2 \tilde{\sigma}_2 + \alpha_s^3 \tilde{\sigma}_3 + \dots$ LOQCD NLOQCD NNLOQCD N³LOQCD

NNLO_{QCD} available for a larger number of processes, $2 \rightarrow 3$ computations current frontier

N³LO_{QCD} available for few LHC processes

Calculation of NLO_{EW} and of mixed NNLO_{QCD-EW} corrections relevant for precise phenomenology (especially for $\alpha \sim 0.01$ candle processes such as DY production)

δ~10-20% **NLO**_{QCD} $\alpha_{\rm s} \sim 0.1$ δ~1-5% NNLO_{QCD} (or even N³LO_{QCD})

Fixed-order description not sufficient for observable sensitive to soft / collinear radiation

Fixed-order description not sufficient for observable sensitive to soft / collinear radiation

Fixed-order description not sufficient for observable sensitive to soft / collinear radiation

Fixed-order description not sufficient for observable sensitive to soft / collinear radiation

E.g transverse momentum q_T of the lepton pair in NC Drell-Yan production

Coooo

Fixed-order description not sufficient for observable sensitive to soft / collinear radiation

ാരാന

• • •

രാത്ത

E.g transverse momentum q_T of the lepton pair in NC Drell-Yan production

Need to consider infinite number of soft / collinear emissions

Many independent **soft-collinear gluons** with comparable angles and transverse momenta

$$v \to 0$$

$$\tilde{\sigma}(v) = \exp\left[\sum_{n} \left(\mathcal{O}(\alpha_s^n L^{n+1}) + \mathcal{O}(\alpha_s^n L^n)\right)\right]$$

Rencontres de La Thuile, 9 Mar 2023

 q_T

Fixed-order description not sufficient for observable sensitive to soft / collinear radiation

E.g transverse momentum q_T of the lepton pair in NC Drell-Yan production

Rencontres de La Thuile, 9 Mar 2023

NNLLQCD +
$$\mathcal{O}(\alpha_s^n L^{n-1}) + \dots)$$

 q_T

Huge progress in the theoretical description of NC and CC Drell-Yan processes in the last few years

Fixed-order description now reaches $\mathcal{O}(\alpha_s^3)$ (N³LO_{QCD}) All-order resummation up to N³LL'_{QCD} QCD-EW correction at order $\mathcal{O}(\alpha_{s}\alpha)$ NNLO_{QCD-EW}

Rencontres de La Thuile, 9 Mar 2023

NNLO_{QCD-EW}

[Armadillo, Bonciani, Buonocore, Devoto, Grazzini, Kallweit, Rana, Savoini, Tramontano, Vicini '21, '22]

[Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, **Röntsch, Signorile-Signorile '22**]

Description of experimental data at N³LO_{QCD}+N³LL_{QCD}

Theoretical predictions now are capable of describing the data **precisely** across a wide range of scales

green: N³LL_{QCD}+N³LO_{QCD}

0.08 > 0.07 9 0.06 0.05 0.04 1/σ 0.03 0.02 0.01 Data 1.15 .05 MC 0.95 0.9 0.85 0

Description of experimental data at N³LO_{QCD}+N³LL_{QCD}

Theoretical predictions now are capable of describing the data **precisely** across a wide range of scales

green: N³LL_{QCD}+N³LO_{QCD}

And are on par, if not better, to parton showers predictions that have been tuned to experimental data

N.B. : RadISH+NNLOJET predictions **do not** include any non-perturbative modelling at low q_T

Control of the differential distributions in DY production

Shape of differential spectra is affected by higher order predictions

[Gehrmann, Glover, Huss, Chen, Yang, Zhu 2205.11426]

[Gehrmann, Glover, Huss, Chen, Monni, R. LR, Torrielli, 2203.01565] N³LL'_{QCD}+N³LO_{QCD} modifies the shape after the Jacobian peak for p_{\perp}^{ℓ}

Impact of N³LO_{QCD} corrections relatively flat in the fit window for M_{\perp}

Interplay of QCD and EW corrections further modify the shape of the differential distributions

[Carloni Calame, Chiesa, Martinez, Montagna, Nicrosini, Piccinini, Vicini 1612.02841]

11

Rencontres de La Thuile, 9 Mar 2023

CDF measurement and theoretical accuracy

CDF II measurement features very aggressive estimates for theory uncertainties, especially when compared to CDF I results with lower luminosity, as all the errors are reduced by a factor 2-3

$p_T(W)$ model	5
Parton distributions	10
QED radiation	4

[CDF collaboration, 1203.0275]

CDF II, 2.2 fb⁻¹ $m_W = 80.387 \pm 19$ (2012)

Do these error reflect the **improved theoretical understanding** of Z/W production at hadron colliders?

Rencontres de La Thuile, 9 Mar 2023

CDF II, 8.8 fb⁻¹ $m_W = 80.433 \pm 9$ (2022)

CDF measurement and theoretical accuracy

Not really: despite being published 10 years apart, the two analyses share most of the same underlying **theoretical model**

CDF II, 2.2 fb⁻¹ (2012)

ResBos (private '03 version) [Balasz, Yuan '97] (N)NLL_{QCD}+NLO_{QCD} CTEQ6.6 NLO PDFs QED modelling with PHOTOS+HORACE

> Reduction of the theoretical error obtained via additional data constraint and use of more modern PDF sets

> > Rencontres de La Thuile, 9 Mar 2023

CDF II, 8.8 fb⁻¹ (2022)

ResBos (private '03 version) [Balasz, Yuan '97] (N)NLL_{QCD}+NLO_{QCD} NNPDF3.1 NNLO PDFs QED modelling with PHOTOS+HORACE

CDF measurement and theoretical accuracy

1995 2005 2000 CDFID0I

(N)NLL_{QCD}+NLO_{QCD}

The jacobian asymmetry $\mathcal{A}_{p_1^{\ell}}$

[LR, P. Torrielli, A. Vicini '23]

The lepton transverse momentum distribution features a **Jacobian peak** at $p_T^{\ell} \sim m_W/2$

Presence of the endpoint makes the distribution particularly sensitive to m_W

Study of covariance matrix constructed from the bins and considering various m_W hypothesis suggests bulk of $m_{W^{W}}$ sensitivity captured by a single bin combination

The jacobian asymmetry $\mathcal{A}_{p^{\ell}}$

$$L = \int_{p_{\perp,\min}^{\ell}}^{p_{\perp,\min}^{\ell}} dp_{\perp}^{\ell} \frac{d\sigma}{dp_{\perp}^{\ell}}$$

[LR, P. Torrielli, A. Vicini '23]

$$U = \int_{p_{\perp,\text{mid}}^{\ell}}^{p_{\perp,\text{max}}^{\ell}} dp_{\perp}^{\ell} \frac{d\sigma}{dp_{\perp}^{\ell}}$$

The lepton transverse momentum distribution features a **Jacobian peak** at $p_T^{\ell} \sim m_W/2$

Presence of the endpoint makes the distribution particularly sensitive to m_W

Study of covariance matrix constructed from the bins and considering various m_W hypothesis suggests bulk of $m_{W^{W}}$ sensitivity captured by a single bin combination

Define **scalar observable** (i.e. it is measurable via counting) which depends only on the edges of the two defining bins

$$\mathscr{A}(p_{\perp,\min}^{\ell}, p_{\perp,\min}^{\ell}, p_{\perp,\max}^{\ell}) = \frac{L_{p_{\perp}^{\ell}} - U_{p_{\perp}^{\ell}}}{L_{p_{\perp}^{\ell}} + U_{p_{\perp}^{\ell}}}$$

The jacobian asymmetry $\mathcal{A}_{p_1^{\ell}}$

[LR, P. Torrielli, A. Vicini '23]

$$U = \int_{p_{\perp,\text{mid}}^{\ell}}^{p_{\perp,\text{max}}^{\ell}} dp_{\perp}^{\ell} \frac{d\sigma}{dp_{\perp}^{\ell}}$$

The lepton transverse momentum distribution features a **Jacobian peak** at $p_T^{\ell} \sim m_W/2$

Presence of the endpoint makes the distribution particularly sensitive to m_W

Study of covariance matrix constructed from the bins and considering various m_W hypothesis suggests bulk of $m_{W^{W}}$ sensitivity captured by a single bin combination

Define scalar observable (i.e. it is measurable via counting) which depends only on the edges of the two defining bins

$$\mathscr{A}(p_{\perp,\min}^{\ell}, p_{\perp,\min}^{\ell}, p_{\perp,\max}^{\ell}) = \frac{L_{p_{\perp}^{\ell}} - U_{p_{\perp}^{\ell}}}{L_{p_{\perp}^{\ell}} + U_{p_{\perp}^{\ell}}}$$

Increasing m_W shifts the peak to the right

Orange bin gets more populated \rightarrow asymmetry decreases Analogous observable can be defined for the transverse mass

The jacobian asymmetry $\mathcal{A}_{p_{\perp}^{\ell}}$ @ the LHC

[LR, P. Torrielli, A. Vicini '23]

The main systematics on the two fiducial cross sections is related to the lepton momentum scale resolution Determination at the LHC at the ± 15 MeV level from the experimental side seems possible ($\delta A_{p_1^\ell}=0.0007$ with 140 fb⁻¹ and 0.001 systematic error on U, L)

Sensitivity to m_W expressed through the slope in each $(p_{\perp,\min}^{\ell}, p_{\perp,\min}^{\ell}, p_{\perp,\max}^{\ell})$ window

Slope **independent** on the QCD approximation

Experimental result and theoretical predictions can be directly compared by looking at the intersection between the lines

Bin size $\mathcal{O}(10 \,\text{GeV})$ has threefold advantage

- 1. Small statistical error
- 2. Perturbative stability of the QCD result
- 3. Unfolding to particle level viable

The jacobian asymmetry $\mathscr{A}_{p_1^\ell}$ and its theoretical uncertainty

[LR, P. Torrielli, A. Vicini '23]

For each interval choice the QCD scale-variation band determines a given m_W interval

N³LL corrections play an important role in reducing uncertainty band

We check the convergence order-by-order. If we observe convergence the size of the m_W interval provides an estimate of the QCD uncertainty

A perturbative QCD uncertainty at the ±5 MeV level is achievable using CC DY data alone

The choice of the midpoint is important to identify two regions with excellent QCD convergence (see regions with $p_{\perp,\text{mid}}^{\ell} = 38 \,\text{GeV}$)

Yet to be included: EW corrections; NP effects; detector modelling (smearing)

The jacobian asymmetry $\mathscr{A}_{p^{\ell}}$ and its theoretical uncertainty

Asymmetry good starting point to investigate size of the QCD uncertainty at a given accuracy (without tuning) QCD uncertainty at lower accuracy considerably larger than state-of-the-art predictions for p_{\perp}^{ℓ} (more than ±80 MeV for some combinations), shifts between central values smaller in size QCD uncertainties smaller for transverse mass (5-10 MeV), but shifts can be larger See also [Isaacson, Fu, Yuan 2205.02788] [CERN-LPCC-2022-06] **LHC** kinematics Rencontres de La Thuile, 9 Mar 2023

The jacobian asymmetry $\mathscr{A}_{p_1^{\ell}}$: additional effects and uncertainties

Excellent convergence properties of the asymmetry in perturbative QCD are a good starting point to discuss additional effects we did not include:

Impact on the central m_W value of

- missing perturbative corrections (QED, QCDxEW)
- non-perturbative effects -

Each effect yields a vertical offset on the asymmetry

QED corrections might also change the shape

 \rightarrow shift on m_W

Impact of non-perturbative corrections expected to reduce when using NNLO+N³LL predictions with respect to results with lower accuracy: interplay of NP QCD model and perturbative accuracy

Parton distribution functions are an additional source of theoretical uncertainty

Linearity of the dependence on m_W allows an easy propagation of each uncertainty source

Information transfer from NCDY to CCDY

NNLO+NNLL taken as our theory model

NNLO+N³LL with central scales as our MC truth

- pseudo-data generated both for NCDY and CCDY
- reweighting function computed from NNLO+NNLL to the pseudo-data in NC for each scale
- same reweighing function applied in CC DY

The $p_{\perp}^{\ell \nu}$ and the p_{\perp}^{ℓ} distributions get closer to the CCDY pseudodata but still maintain some shape differences

 \rightarrow delicate to assume that $p_{\perp}^{\ell\nu}$ rescaling applies equally well to p_{\perp}^{ℓ}

Perturbative QCD uncertainty on m_W estimated with or without reweighing is of similar size

Usage of the highest available perturbative order is **recommended** to minimize the systematics in the transfer from Z to W

Similar conclusions for m_{\perp} (where uncertainties are smaller)

The lepton transverse momentum distribution in CCDY

PDF uncertainties on m_W evaluated conservatively using the 100 replicas of the NNPDF4.0 set at NLO+NLL

$\delta m_W = \pm 11 \,\mathrm{MeV}$

Spread of the central values of CT18NNLO, MSHTnnlo, NNPDF4.0 of $\sim 30 \,\text{MeV}$

(For $M_{\perp}^{\ell\nu}$: $\delta m_W \simeq \pm 5 \text{ MeV}$, spread $\simeq 10 \text{ MeV}$)

Size of the uncertainty expected, as the asymmetry is a single scalar observable particularly sensitive to PDF variations

More information needed to mitigate PDF uncertainty, e.g. profiling using additional bins of the p_{\perp}^{ℓ} distribution

PDF uncertainty can be reduced to the **few MeV level** thanks to the **strong anti correlated behaviour** of the two tails of p_{\perp}^{ℓ}

Summary and outlook

- Huge amount of theoretical work in the last few years in the computation of higher-order and accurate description of neutral and charged DY production
- uncertainties using state-of-the-art predictions
- Shape of the p_T^{ℓ} distribution and presence of the Jacobian peak motivates the definition of a scalar **observable** which **maximises the sensitivity** on m_W and has several advantages
 - excellent pQCD convergence
 - more systematic study of theoretical uncertainties
 - large linear dependence on $m_W \rightarrow$ sensitivity for a precision measurement
- Determination at the ± 15 MeV level from the experimental side seems possible; perturbative QCD uncertainty at the $\pm 5 \,\text{MeV}$ level is achievable using CC DY data alone
- uncertainties due to interplay of non perturbative effects and missing higher orders corrections

21

corrections (QCD resummation, mixed QCD and QED corrections), which now allow for a precise

• Future measurement of m_W should exploit these computation for a reliable estimate of the theoretical

• Use of theoretical predictions at lower accuracy and reliance on tuning might **underestimate theory**

• For the future: thorough phenomenological study, including all the available SM radiative corrections Rencontres de La Thuile, 9 Mar 2023

Controlling systematics

Robust check of many underlying systematics (although not sensitive to modelling of p_T^Z/p_T^W ratio) can be performed by extracting the Z mass using template fit technique

"Quia vidisti me, credidisti; beati, qui non viderunt et crediderunt"

Johannes 20, 29

[because thou hast seen me, thou hast believed: blessed are they that have not seen, and yet have believed]

PDFs and their uncertainties: template fits

PDF-induced uncertainty typically computed by generating templates with a given PDF member *i* for various values of m_W , and subsequently fitting all other members *j* defining a proper figure of merit

Once the preferred value for m_W for each member has been determined by minimising the figure of merit, compute PDF-induced uncertainty

[[]Bozzi, Citelli, Vicini 1501.05587]

$$\frac{(T_k^j - D_k^i)^2}{\sigma_k^2}$$

PDF uncertainties with this strategy are **relatively** large at the LHC, with a resulting uncertainty larger than 10 MeV and considerably large spreads between different PDF sets

Cfr. ~ 4 MeV quoted by CDF II with NNLO PDFs

4 MeV also claimed by CDF II to be the shift between NNPDF3.1 NNLO and ~15 years old NLO CTEQ6.6 PDFs

Ś

CERN - Geneva

cuts. We are thus able to sum the contributions of MANY SMALL sources which were absent in previous studies and which can, in the sum, yield a sizeable result. These are the "many roads" of the title. [This concern, that many small numbers can yield a large sum, was colourfully voiced at the meeting by G. Altarelli who described his vision of a mixture of small effects -- the Altarelli cocktail -- leading to the observed signal.] Before proceeding to the

Rencontres de La Thuile, 9 Mar 2023

THE STANDARD MODEL AND MISSING E OR

THE MANY ROADS TO PARADISE

Stephen D. Ellis[#]

PDFs and their uncertainties: bin-by-bin correlations

Bin-by-bin correlations between PDF replicas can be taken into account inserting the information about PDFs in the covariance matrix

$$(\Sigma_{\rm PDF})_{ij} = \langle (\mathcal{T} - \langle \mathcal{T} \rangle_{\rm PDF})_i (\mathcal{T} - \langle \mathcal{T} \rangle_{\rm PDF})_j \rangle_{\rm PDFs}$$

Compute χ^2 using full covariance matrix in the definition

[Bagnaschi, Vicini 1910.04726]

$$\forall m_{W,i}$$
 $C = \Sigma_{\text{PDF}} + \Sigma_{\text{MC}} + \Sigma_{\text{stat}} + \Sigma_{\text{exp}},$

Inserting the information about PDFs in the covariance matrix leads to a profiling action given by the data

PDF uncertainty can be reduced to the **few MeV level** thanks to the **strong anti correlated Denaviour** of the two tails of p^{ℓ}

Drell-Yan production at N³LO_{QCD}

12

Inclusive Drell-Yan cross section known analytically at N³LO

[Duhr, Mistlberger 210] ENGY

Understanding the Z and W correlations

Thanks to the availability of theoretical prediction at high accuracy, it is possible to assess reliably the behaviour of the perturbative series for crucial observables such as p_T^Z/p_T^W ratio

$$\frac{1}{\sigma^{W}} \frac{d\sigma^{W}}{p_{\perp}^{W}} \sim \frac{1}{\sigma_{\text{data}}^{Z}} \frac{d\sigma_{\text{theory}}^{Z}}{\sigma_{\text{theory}}^{Z}} \frac{1}{p_{\perp}^{W}} \frac{d\sigma_{\text{theory}}^{W}}{\rho_{\perp}^{Z}}$$

Stability of the ratio indicates high level of correlation between the two spectra

Comparison with tuned event generator such as **PYTHIA*** however indicates that full correlation might be too strong an assumption

* "PYTHIA is not QCD"

[Kirill Melnikov, QCD@LHC 2016]

[Bizon, de Ridder, Gehrmann, Glover, Huss, Chen, Monni, Re, <u>LR</u>, Walker, 1905.05171] Rencontres de La Thuile, 9 Mar 2023

Description of experimental data at N³LO_{QCD}+

The theoretical progress made in the the past 5 years has significantly improved the description of the experimental data, pinning down the theoretical uncertainties to the few percent level in the description of differential spectra

[Gehrmann, Glover, Huss, Chen, Monni, Re, <u>LR</u>, Torrielli, 2203.01565]

blue: NNLL'QCD+NNLOQCD N³LL'_{QCD}+N³LO_{QCD} red:

Impact of QED and mixed QCD×QED corrections

Largest shifts induced by **QED FSR**

Subleading EW effects induce few MeV shifts

	$p\bar{p} \rightarrow W^+, \sqrt{s} = 1.96 \text{ TeV}$			M_W sh	
	Templates accuracy: NLO-QCD+QCD _{PS}		$\mid W^+$ -	$W^+ \to \mu^+ \nu$	
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	
1	$NLO-QCD+(QCD+QED)_{PS}$	Рутніа	-91±1	-308 ± 4	
2	$NLO-QCD+(QCD+QED)_{PS}$	Рнотоз	-83±1	-282 ± 4	
3	$\text{NLO-}(\text{QCD+EW})\text{-two-rad}+(\text{QCD+QED})_{\text{PS}}$	Pythia	-86 ± 1	-291±3	
4	$\text{NLO-}(\text{QCD+EW})\text{-two-rad}+(\text{QCD+QED})_{\text{PS}}$	Рнотоз	-85 ± 1	-290 ± 4	

[Carloni Calame, Chiesa, Martinez, Montagna, Nicrosini, Piccinini, Vicini 1612.02841]

	$pp \to W^+, \sqrt{s} = 14 \text{ TeV}$	M_W shifts (MeV)			
	Templates accuracy: LO	$W^+ \to \mu^+ \nu$		$W^+ \to e^+ \nu$	
	Pseudo-data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ
1	HORACE only FSR-LL at $\mathcal{O}(\alpha)$	-94±1	-104 ± 1	-204 ± 1	-230±2
2	HORACE FSR-LL	-89 ± 1	-97 ± 1	-179 ± 1	-195 ± 1
3	HORACE NLO-EW with QED shower	-90 ± 1	-94 ± 1	-177 ± 1	-190 ± 2
4	HORACE $FSR-LL + Pairs$	-94 ± 1	-102 ± 1	-182 ± 2	-199 ± 1
5	Рнотоs FSR-LL	-92 ± 1	-100 ± 2	-182±1	-199 ± 2

Analyses do include the bulk of the QCDxQED corrections

The impact on the m_W shifts of the mixed QCDXQED corrections strongly depends on the underlying QCD model

Note: in this approach non-factorizable contributions are neglected

The lepton transverse momentum distribution in CC DY

Presence of the endpoint makes the distribution particularly sensitive to m_W

The lepton transverse momentum distribution features a **Jacobian peak** at $p_T^{\ell} \bigvee m_W A p_{\perp}^2$

At **LO**, in the narrow width approx., the distribution p_{\perp} features a kinematical endpoint at $m_W/2$

Width effects broaden the distribution above $m_W/2$

Beyond LO, sensitivity to soft radiation creates unphysical instabilities around $m_W/2$ in fixed-order computations [Catani, Webber '97]

All-order resummation effects cure such instabilities ad provide physical prediction

 m_W

p_{\perp}^{ℓ} covariance matrix

$$C_{ij}^{(m_W)} = \langle \sigma_i \sigma_j \rangle - \langle \sigma_i \rangle \langle \sigma_j \rangle$$

Eigenvalues represent the sensitivity of each eigenvectors (bin combination) to m_W variations.

$$\langle x \rangle = \frac{1}{N} \sum_{k=1}^{N} x_k$$

Progress in mixed QCD×EW corrections

Complete set of corrections to neutral and charged current Drell-Yan production recently obtained by two groups NNLO QCD-EW corrections to charged-current DY (2-loop contributions in pole approximation).

[Buonocore, Grazzini, Kallweit, Savoini, Tramontano 2102.12539]

exact NNLO QCD-EW corrections to neutral-current DY [Bonciani, Buonocore, Grazzini, Kallweit, Rana, Tramontano, Vicini, 2106.11953] [Armadillo, Bonciani, Devoto, Rana, Vicini 2201.01754] [Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, Röntsch, Signorile-Signorile 2203.11237]

Impact of mixed $\mathcal{O}(\alpha_s \alpha)$ corrections estimated to be potentially relevant for $\mathcal{O}(10 \text{ MeV})$ extraction at the LHC [Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch 2103.02671]

Matching of such corrections to QCD and QED all-order resummation of high relevance for accurate and precise analysis of the p_T^{ℓ} distribution

Combination of QCD+QED resummation so far available only for Z/W production without decays [Autieri, Cieri, Ferrera, Sborlini '18, '23]

