# High precision measurement of the W boson mass at CDF 



Chris Hays, Oxford University

La Thuile 2023
9 March


## W boson mass

Higgs field potential


$$
\begin{gathered}
m_{H}=v \sqrt{2 \lambda}=125 \mathrm{GeV} \\
\lambda \approx 0.1
\end{gathered}
$$

Gauge field potential

$$
\begin{array}{r}
V=-\frac{g^{2} v^{2}}{8}\left[\left(W_{\mu}^{+}\right)^{2}+\left(W_{\mu}^{-}\right)^{2}\right] \\
-\frac{v^{2}\left(g^{2}+g^{2}\right)}{8} Z^{\mu} Z_{\mu} \\
m_{W}=\frac{v}{2} g \quad \\
m_{Z}=\frac{v}{2} \sqrt{g^{2}+g^{2}} \\
v=246 \mathrm{GeV} \text { and } g=0.64: \\
m_{W}=78.7 \mathrm{GeV}
\end{array}
$$

## W boson mass

Gauge quantum corrections


SM calculation: 81358 MeV

Higgs quantum corrections


Naively integrating to a cutoff scale $\Lambda$ :

$$
\Delta m_{H}^{2}=\frac{3 g^{2} m_{t}^{2}}{16 \pi^{2} m_{W}^{2}} \Lambda^{2}
$$

If there is no new physics up to scale $\Lambda$ then we need 'fine-tuning' to cancel the quantum corrections
$1 \%$ fine tuning: $\Lambda=6.6 \mathrm{TeV}$
Motivates TeV-scale new physics


## W boson mass

The SM effective field theory parameterizes general high-scale effects

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}+\mathcal{L}^{(5)}+\mathcal{L}^{(6)}+\mathcal{L}^{(7)}+\cdots, \quad \mathcal{L}^{(d)}=\sum_{i=1}^{n_{d}} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} Q_{i}^{(d)} \quad \text { for } d>4
$$



$$
\frac{\delta m_{W}}{m_{W}}=\left(0.34 c_{H D}+0.72 c_{H W B}+0.37 c_{H l 3}-0.19 c_{l l 1}\right) \frac{v^{2}}{\Lambda^{2}}
$$

For $\delta m_{W} / m_{W}=0.1 \%$ and $\mathrm{c}_{\mathrm{HD}}=1, \Lambda=4.5 \mathrm{TeV}$ e.g. Z' boson

For $\delta m_{W} / m_{W}=0.1 \%$ and $\mathrm{chwB}=1, \Lambda=6.6 \mathrm{TeV}$ e.g. compositeness

Smaller $\mathrm{C}_{\mathrm{i}} \rightarrow$ smaller $\Lambda$


## CDF @ Tevatron

$\sqrt{s}=1.96 \mathrm{TeV}$ proton-antiproton collisions from the Fermilab Tevatron


CDF: $8.8 \mathrm{fb}^{-1}$ of integrated luminosity


## Measurement overview



W bosons identified in their decays to $e \nu$ and $\mu \nu$
Mass measured by fitting template distributions of transverse momentum and mass

$$
m_{T}=\sqrt{2 p_{T}^{l} p_{T}(1-\cos \Delta \phi)}
$$

$$
\vec{p}_{T}=-\left(\vec{p}_{T}^{l}+\vec{u}_{T}\right)
$$



## Calibrations



W bosons identified in their decay to $e \nu$ or $\mu \nu$

## Measurement requires precise calibrations of

 momentum scale and resolution
## Charged lepton scale:



## Muon momentum calibration

## First step is to align the tracker system

Determine individual 'sensor' positions by minimizing $\chi^{2}$ difference between sensor and reconstructed track positions using cosmic-ray and collision data

CDF: 10k drift-chamber degrees of freedom (shift \& rotation for each of 2520 cells at each endplate)




## Muon momentum calibration

## Second step is to correct for biases unconstrained by alignment procedure

Use data from resonance decays to muons and electrons

Correct curvature as function of polar angle using electrons from $W \rightarrow e \nu$ and $Z \rightarrow e e$ decays Use $J / \psi, \Upsilon$, and Z decays to correct for tracker length, field nonuniformities, endplate twists, and amount of material upstream of drift chamber


## Muon momentum calibration

Third step is to calibrate the momentum scale using $J / \psi, \Upsilon$, and $\mathbf{Z}$ decays to muons

$Z$ boson mass in the muon decay channel is measured to be

$$
M_{Z}=91192.0 \pm 6.4_{\text {stat }} \pm 4.0_{\text {sys }} \mathrm{MeV}
$$

The most precise measurement of the $Z$ boson mass at a hadron collider

Uncertainty is 3.6 times that of LEP


## Electron momentum calibration

First step is to correct the response variations in data
Use ratio of calorimeter energy to track momentum ( $\mathrm{E} / \mathrm{p}$ ) to remove response variations with time and position within tower and in pseudorapidity

## Second step is to simulate the energy loss

Tune the amount of upstream material using $\mathrm{E} / \mathrm{p}$ from $W \rightarrow e \nu$ events Correct the downstream energy leakage using $\mathrm{E} / \mathrm{p}$


| Tower | Thickness $\left(x_{0}\right)$ | Number of lead sheets |
| :---: | :---: | :---: |
| 0 | 17.9 | 30 |
| 1 | 18.2 | 30 |
| 2 | 18.2 | 29 |
| 3 | 17.8 | 27 |
| 4 | 18.0 | 26 |
| 5 | 17.7 | 24 |
| 6 | 18.1 | 23 |
| 7 | 17.7 | 21 |
| 8 | 18.0 | 20 |



Kotwal \& CH, NIMA 729, 25 (2013)

## Electron momentum calibration

## Third step is to calibrate the response

Transfer track momentum calibration to calorimeter using (E/p) distribution, combine with calibration from $Z \rightarrow e e$ decays

$Z$ boson mass in the electron decay channel measured to be

$$
M_{Z}=91194.3 \pm 13.8_{\text {stat }} \pm 7.6_{\text {sys }} \mathrm{MeV}
$$

Consistent with measurement in muon channel
Lower precision due to calorimeter dead regions


## Calibrations



Recoil scale


## Measurement requires precise calibrations

 of momentum scale and resolution$$
\vec{p}_{T}=-\left(\vec{p}_{T}^{l}+\vec{u}_{T}\right)
$$



## Recoil momentum calibration

First step is data uniformity corrections
Align calorimeter relative to the beam axis to remove any modulation in the recoil direction


## Second step is the reconstruction of the recoil

Remove custom tower windows traversed by electrons or muons
Remove corresponding recoil energy in simulation using a distribution from towers rotated by $90^{\circ}$ Validate the procedure by studying towers rotated by $180^{\circ}$
Electron Electromagnetic $E_{T}(\mathrm{MeV})$



## Recoil momentum calibration

Third step is the calibration of the recoil response
Scale generated recoil to balance $\mathrm{p}^{\mathrm{Z}}$ and check observed response $\mathrm{R}_{\mathrm{rec}}$





## Recoil momentum calibration

## Fourth step is the calibration of the recoil resolution

Includes jet-like energy and angular resolution, additional dijet fraction term, and pileup


## Recoil momentum validation

## W boson recoil distributions validate the model

Most important is the recoil projected along the charged-lepton's momentum $\left(u_{\| \mid}\right)$

$$
m_{T} \approx 2 p_{T} \sqrt{1+u_{\|} / p_{T}} \approx 2 p_{T}+u_{\|}
$$



## W boson production

Transverse mass insensitive to $\mathrm{pT}^{\mathrm{w}}$ to first order
$\mathrm{O}(1 \mathrm{MeV})$ change in $\mathrm{mw}_{\mathrm{w}}$ for each \% change in $\mathrm{p}^{W}$ from $0-30 \mathrm{GeV}$
Lepton $p_{T}$ distributions more sensitive to $p_{T}{ }^{W}$
Generate events with Resbos: non-perturbative parameters \& NNLL resummation
Z boson p т constrains non-perturbative parameter(s)
Determine $p_{T}^{Z} \rightarrow p_{T}^{W}$ uncertainty using DYQT perturbative \& resummation scale variations
Use observed $W$ recoil spectrum to constrain scale variations
Similar uncertainty between correlating W \& Z scales and not correlating them


## W boson candidates

W boson event selection
require kinematics consistent with resonance production

## Lepton identification

No lepton isolation requirement in trigger or offline selection
High efficiency with little recoil dependence


## Backgrounds

Most challenging background comes from hadrons misreconstructed as leptons (0.2-0.3\%)

## W boson mass measurement






## W boson mass measurement



## W boson mass measurement

| Combination | $m_{T}$ fit <br> Electrons Muons | $p_{T}^{\ell}$ fit <br> Electrons Muons | $p_{T}^{\nu}$ fit <br> Electrons Muons | Value (MeV) |  | $\chi^{2} /$ dof | Probability <br> $(\%)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m_{T}$ | $\checkmark$ | $\checkmark$ |  |  |  |  | $80439.0 \pm 9.8$ | $1.2 / 1$ |
| $p_{T}^{\ell}$ |  |  | $\checkmark$ | $\checkmark$ |  |  | 80 | $421.2 \pm 11.9$ |


| Fit difference | Muon channel | Electron channel |
| :---: | :---: | :---: |
| $M_{W}\left(\ell^{+}\right)-M_{W}\left(\ell^{-}\right)$ | $-7.8 \pm 18.5_{\text {stat }} \pm 12.7{ }_{\text {7 }}^{\text {Cot }}$ | $14.7 \pm 21.3_{\text {stat }} \pm 7 . ._{\text {stat }}^{\mathrm{E} / \mathrm{p}}\left(0.4 \pm 21.3_{\text {stat }}\right)$ |
| $M_{W}\left(\phi_{\ell}>0\right)-M_{W}\left(\phi_{\ell}<0\right)$ | $24.4 \pm 18.5_{\text {stat }}$ | $9.9 \pm 21.3_{\text {stat }} \pm 7.5_{\text {stat }}^{\text {E/p }}\left(-0.8 \pm 21.3_{\text {stat }}\right)$ |
| $M_{Z}($ run $>271100)-M_{Z}($ run $<271100)$ | $5.2 \pm 12.22_{\text {stat }}$ | $63.2 \pm 29.99_{\text {stat }} \pm 8.22_{\text {stat }}^{\mathrm{ER/p}}\left(-16.0 \pm 29.9_{\mathrm{stat}}\right)$ |

## W boson mass measurements



## Summary

The W boson mass is a sensitive quantity to high-scale physics

Measurement with <10 MeV precision ( $\sim 0.01 \%$ ) achieved using the complete CDF data set

Result of $>20$ years of experience with the CDF II detector

Surprising $0.1 \%$ deviation from SM motivates expanded study of $m_{w}$ measurements and procedures

## Backup



| 2.2/fb result |  |  |
| :--- | :---: | :---: |
| Distribution | $M_{W}(\mathrm{MeV})$ | $\chi^{2} /$ d.o.f. |
| $W \rightarrow e \nu$ |  |  |
| $m_{T}$ | $80408 \pm 19$ | $52 / 48$ |
| $p_{T}^{\ell}$ | $80393 \pm 21$ | $60 / 62$ |
| $p_{T}^{\nu}$ | $80431 \pm 25$ | $71 / 62$ |
| $W \rightarrow \mu \nu$ | $80379 \pm 16$ | $57 / 48$ |
| $m_{T}$ | $80348 \pm 18$ | $58 / 62$ |
| $p_{T}^{t}$ | $80406 \pm 22$ | $82 / 62$ |
| $p_{T}^{\nu}$ |  |  |


| background fractions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Source | Fraction <br> (\%) | $\delta M_{W}(\mathrm{MeV})$ |  |  |
|  |  | $m_{T}$ fit | $p_{T}^{\mu}$ fit | $p_{T}^{\nu}$ fit |
| $Z / \gamma^{*} \rightarrow \mu \mu$ | $7.37 \pm 0.10$ | 1.6 (0.7) | 3.6 (0.3) | 0.1 (1.5) |
| $W \rightarrow \tau \nu$ | $0.880 \pm 0.004$ | 40.1 (0.0) | ) 0.1 (0.0) | 0.1 (0.0) |
| Hadronic jets | $0.01 \pm 0.04$ | 0.1 (0.8) | -0.6 (0.8) | 2.4 (0.5) |
| Decays in flight | ht $0.20 \pm 0.14$ | 1.3 (3.1) | ) 1.3 (5.0) | -5.2 (3.2) |
| Cosmic rays | $0.01 \pm 0.01$ | 0.3 (0.0) | ) 0.5 (0.0) | 0.3 (0.3) |
| Total | $8.47 \pm 0.18$ | 2.1 (3.3) | 3.9 (5.1) | 5.7 (3.6) |
|  | Fraction |  | $\delta M_{W}(\mathrm{MeV})$ |  |
| Source | (\%) | $m_{T}$ fit | $p_{T}^{e} \mathrm{fit}$ | $p_{T}^{\nu}$ fit |
| $Z / \gamma^{*} \rightarrow e e \quad 0.1$ | $0.134 \pm 0.003$ | 0.2 (0.3) | 0.3 (0.0) | 0.0 (0.6) |
| $W \rightarrow \tau \nu \quad 0$ | $0.94 \pm 0.01$ | 0.6 (0.0) | 0.6 (0.0) | 0.6 (0.0) |
| Hadronic jets 0 | $0.34 \pm 0.08$ | 2.2 (1.2) | 0.9 (6.5) | $6.2(-1.1)$ |
| Total 1.4 | $1.41 \pm 0.08$ | 2.3 (1.2) | 1.1 (6.5) | 6.2 (1.3) |

## W boson production and decay

Parton distributions impact the measurement through lepton acceptance
Restriction in $\eta$ reduces the fraction of low-pt leptons
Small correction applied to update to NNPDF3.1 NNLO PDF
The set with the most W charge asymmetry measurements at the time


Uncertainty determined using a principal component analysis on the replica set
Measurement sensitive to $\sim 15$ eigenvectors
Leading 25 eigenvectors used to estimate uncertainty ( 3.9 MeV )
Three general NNLO PDF sets (NNPDF3.1, CT18, and MMHT14) have a range of $\pm 2.1 \mathrm{MeV}$ from mean

| W+ initial | Type | Pythia LO | Madgraph LO | Madgraph NLO |
| :---: | :---: | :---: | :---: | :---: |
| u dbar | v-v. | 81.7\% | 82.0\% | 82.7\% |
| dbar u | $s-s$ | 8.9\% | 9.0\% | 8.8\% |
| usbar | v-s | 1.6\% | 1.9\% | 1.8\% |
| sbar u | S-s | 0.3\% | 0.3\% | 0.3\% |
| c sbar | s-s | 2.9\% | 2.9\% | - |
| sbar c | S-s | 2.9\% | 2.9\% | - |
| c dbar | S-V | 0.7\% | 0.7\% | - |
| dbar c | S-S | 0.2\% | 0.2\% | - |
| ug | $v-\mathrm{g}$ |  | - | 3.7\% |
| g dbar | $g-\mathrm{v}$ |  | - | 1.8\% |
| gu | g-s |  | - | 0.4\% |
| dbarg | s-g |  | - | 0.5\% |
| g sbar | g-s |  | - | 0.02\% |
| sbar g | s-g |  | - | 0.02\% |

Photos resummation with ME corrections used to model final-state photon radiation validated by studying the average radiation in EM towers around the charged lepton, and with the $Z$ mass measurement

## Combination and compatibility of $\mathrm{m}_{\mathrm{w}}$ measurements

Working group to combining the measurements from CDF, DO, ATLAS, LHCb, and the LEP experiments
Update measurements to a common PDF set and a common calculation of W boson polarization
Simulate events with custom fast simulations



$$
w_{A_{i} \rightarrow A_{i}^{\prime}}\left(\cos \theta, \phi ; p_{\mathrm{T}}^{W}, y_{W}\right)=\frac{\left(1+\cos ^{2} \theta\right)+\sum_{i} A_{i}^{\prime}\left(p_{\mathrm{T}}^{W}, y_{W}\right) f_{i}(\theta ; \phi)}{\left(1+\cos ^{2} \theta\right)+\sum_{i} A_{i}\left(p_{\mathrm{T}}^{W}, y_{W}\right) f_{i}(\theta ; \phi)}
$$

| Dataset | NNPDF31 | NNPDF40 | MMHT14 | MSHT20 | CT18NNLO | ABMP16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CDF Z rapidity | $24 \mid 28 / 28$ | $28 \mid 30 / 28$ | $30 \mid 31 / 28$ | $32 \mid 32 / 28$ | $27 \mid 27 / 28$ | $31 \mid 31 / 28$ |
| CDF W asymmetry | $11 \mid 57 / 13$ | $14 \mid 17 / 13$ | $12 \mid 13 / 13$ | $28 \mid 27 / 13$ | $11 \mid 35 / 13$ | $21 \mid 43 / 13$ |
| D0 Z rapidity | $22 \mid 22 / 28$ | $23 \mid 23 / 28$ | $23 \mid 23 / 28$ | $24 \mid 23 / 28$ | $22 \mid 22 / 28$ | $22 \mid 22 / 28$ |
| D0 $W e v$ lepton asymmetry | $22 \mid 32 / 13$ | $23 \mid 29 / 13$ | $52 \mid 51 / 13$ | $42 \mid 40 / 13$ | $19 \mid 32 / 13$ | $26 \mid 24 / 13$ |
| D0 $W \mu \nu$ lepton asymmetry | $12 \mid 14 / 10$ | $12 \mid 16 / 10$ | $11 \mid 14 / 10$ | $11 \mid 13 / 10$ | $12 \mid 13 / 10$ | $11 \mid 12 / 10$ |
| ATLAS peak CC Z rapidity | $13 \mid 18 / 12$ | $13 \mid 17 / 12$ | $58 \mid 89 / 12$ | $17 \mid 19 / 12$ | $11 \mid 77 / 12$ | $18 \mid 32 / 12$ |
| ATLAS $W^{-}$lepton rapidity | $12 \mid 18 / 11$ | $12 \mid 15 / 11$ | $33 \mid 33 / 11$ | $16 \mid 17 / 11$ | $9.9 \mid 28 / 11$ | $14 \mid 17 / 11$ |
| ATLAS $W^{+}$lepton rapidity | $8.9 \mid 13 / 11$ | $8.6 \mid 11 / 11$ | $15 \mid 21 / 11$ | $12 \mid 13 / 11$ | $9.4 \mid 16 / 11$ | $10 \mid 12 / 11$ |
| Correlated $\chi^{2}$ | $76 \mid 110$ | $63 \mid 83$ | $212 \mid 236$ | $91 \mid 102$ | $43 \mid 251$ | $86 \mid 108$ |
| Log penalty $\chi^{2}$ | $-0.62 \mid-0.62$ | $-0.58 \mid-0.58$ | $-1.62 \mid-1.62$ | $-2.89 \mid-2.89$ | $-1.68 \mid-1.68$ | $-2.72 \mid-2.72$ |
| Total $\chi^{2} /$ dof | $200 \mid 312$ | $195 \mid 242$ | $445 \mid 509$ | $270 \mid 283$ | $163 \mid 499$ | $236 \mid 300$ |
|  | 126 | 126 | 126 | 126 | 126 | 126 |
| $\chi^{2}$ p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |

## Measurement updates

## updates relative to 2.2 /fb result

| Method or technique | impact |
| :--- | :---: |
| Detailed treatment of parton distribution functions | +3.5 MeV |
| Resolved beam-constraining bias in CDF reconstruction | +10 MeV |
| Improved COT alignment and drift model $[65]$ | uniformity |
| Improved modeling of calorimeter tower resolution | uniformity |
| Temporal uniformity calibration of CEM towers | uniformity |
| Lepton removal procedure corrected for luminosity | uniformity |
| Higher-order calculation of QED radiation in $J / \psi$ and $\Upsilon$ decays | accuracy |
| Modeling kurtosis of hadronic recoil energy resolution | accuracy |
| Improved modeling of hadronic recoil angular resolution | accuracy |
| Modeling dijet contribution to recoil resolution | accuracy |
| Explicit luminosity matching of pileup | accuracy |
| Modeling kurtosis of pileup resolution | accuracy |
| Theory model of $p_{T}^{W} / p_{T}^{Z}$ spectrum ratio | accuracy |
| Constraint from $p_{T}^{W}$ data spectrum | robustness |
| Cross-check of $p_{T}^{Z}$ tuning | robustness |

## Future possibilities

## Recoil tuning

Fine-tune calorimeter response corrections in data
Calibrate a shower Monte Carlo

## Recoil validation

Compare W \& Z response in events with a single lepton (remove any additional lepton)
Compare W \& Z energy flows

## Event generation

Generate events using a higher-order calculation
Validate $\mathrm{p}^{\mathrm{W}}$ using high/low $\mathrm{p}^{\top}$ asymmetry
Validate PDF using low pTl region and rapidity-dependent mass fits

## Event selection

Vary lepton id (add isolation)

## Analysis updates

Identify the effect of each analysis change in the muon channel

## Luminosity \& time dependence

Fit mass in subsets in time or luminosity

## Uncertainties

| Source | Uncertainty (MeV) |
| :---: | :---: |
| Lepton energy scale | 3.0 |
| Lepton energy resolution | 1.2 |
| Recoil energy scale | 1.2 |
| Recoil energy resolution | 1.8 |
| Lepton efficiency | 0.4 |
| Lepton removal | 1.2 |
| Backgrounds | 3.3 |
| $p_{7}^{z}$ model | 1.8 |
| $p_{T}^{W} / p_{T}^{z}$ model | 1.3 |
| Parton distributions | 3.9 |
| QED radiation | 2.7 |
| W boson statistics | 6.4 |
| Total | 9.4 |


| Source of systematic uncertainty | Electrons | $m_{T}$ fit Muons | Common | Electrons | $p_{T}^{\ell}$ fit <br> Muons | Common | Electrons | $p_{T}^{\nu}$ fit <br> Muons | Common |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lepton energy scale | 5.8 | 2.1 | 1.8 | 5.8 | 2.1 | 1.8 | 5.8 | 2.1 | 1.8 |
| Lepton energy resolution | 0.9 | 0.3 | -0.3 | 0.9 | 0.3 | -0.3 | 0.9 | 0.3 | -0.3 |
| Recoil energy scale | 1.8 | 1.8 | 1.8 | 3.5 | 3.5 | 3.5 | 0.7 | 0.7 | 0.7 |
| Recoil energy resolution | 1.8 | 1.8 | 1.8 | 3.6 | 3.6 | 3.6 | 5.2 | 5.2 | 5.2 |
| Lepton $u_{\\| \mid}$efficiency | 0.5 | 0.5 | 0 | 1.3 | 1.0 | 0 | 2.6 | 2.1 | 0 |
| Lepton removal | 1.0 | 1.7 | 0 | 0 | 0 | 0 | 2.0 | 3.4 | 0 |
| Backgrounds | 2.6 | 3.9 | 0 | 6.6 | 6.4 | 0 | 6.4 | 6.8 | 0 |
| $p_{T}^{Z}$ model | 0.7 | 0.7 | 0.7 | 2.3 | 2.3 | 2.3 | 0.9 | 0.9 | 0.9 |
| $p_{T}^{W} / p_{T}^{Z}$ model | 0.8 | 0.8 | 0.8 | 2.3 | 2.3 | 2.3 | 0.9 | 0.9 | 0.9 |
| Parton distributions | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 |
| QED radiation | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 |
| Statistical | 10.3 | 9.2 | 0 | 10.7 | 9.6 | 0 | 14.5 | 13.1 | 0 |
| Total | 13.5 | 11.8 | 5.8 | 16.0 | 14.1 | 7.9 | 18.8 | 17.1 | 7.4 |

## Electron momentum calibration







## Recoil in W \& Z events



## Recoil projections in W events





## Recoil reconstruction in muon channel

|  | Muon Electromagnetic $E_{T}(\mathrm{MeV})$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 60 | 60 | 60 | 61 | 60 | 60 | 60 |
|  |  | 59 | 59 | 60 | 62 | 61 | 59 | 59 |
|  |  | 61 | 61 | 62 | 82 | 66 | 61 | 61 |
|  |  | 61 | 61 | 63 | 378 | 70 | 62 | 61 |
|  |  | 59 | 60 | 61 | 67 | 62 | 60 | 60 |
|  |  |  | 59 | 60 | 61 | 61 | 60 | 59 |
|  |  |  | 60 | 60 | 61 | 61 | 60 | 60 |
|  |  | -3 | -2 | -1 | 0 | 1 | $\stackrel{2}{2}$ |  |





## Electron momentum calibration






## Z mass fits using tracker or calorimeter



| Electrons | Calorimeter | Track |
| :--- | :---: | :---: |
| $E / p<1.1$ only | $91190.9 \pm 19.7$ | $91215.2 \pm 22.4$ |
| $E / p>1.1$ and $E / p<1.1$ | $91201.1 \pm 21.5$ | $91259.9 \pm 39.0$ |
| $E / p>1.1$ only | $91184.5 \pm 46.4$ | $91167.7 \pm 109.9$ |

## Muon momentum calibration

Third step is to calibrate the scale using $\Upsilon$ decays to muons
Compare fit results with and without constraining the track to the collision point


| Source | $J / \psi(\mathrm{ppm})$ | $\Upsilon(\mathrm{ppm})$ | Correlation (\%) |
| :--- | :---: | :---: | :---: |
| QED | 1 | 1 | 100 |
| Magnetic field non-uniformity | 13 | 13 | 100 |
| Ionizing material correction | 11 | 8 | 100 |
| Resolution model | 10 | 1 | 100 |
| Background model | 7 | 6 | 0 |
| COT alignment correction | 4 | 8 | 0 |
| Trigger efficiency | 18 | 9 | 100 |
| Fit range | 2 | 1 | 100 |
| $\Delta p / p$ step size | 2 | 2 | 0 |
| World-average mass value | 4 | 27 | 0 |
| Total systematic | 29 | 34 | 16 ppm |
| Statistical NBC (BC) | 2 | $13(10)$ | 0 |
| Total | 29 | 36 | 16 ppm |

## Muon momentum calibration

First step is to align the drift chamber (the "central outer tracker" or COT)
Two parameters for the electrostatic deflection of the wire within the chamber constrained using difference between fit parameters of incoming and outgoing cosmic-ray tracks





## Track momentum calibration

Residual tracker misalignments studied using difference in E/p between electrons and positrons
Correction as a function of polar angle applied to measured tracks from W and Z decays
Linear dependence on cot theta would cause a bias in the mw mass fit
No linear correction required, statistical precision from E/p constrains the bias to $<0.8 \mathrm{MeV}$


## Detector simulation

Developed custom simulation for analysis
Models ionization energy loss, multiple scattering, bremsstrahlung, photon conversion, Compton scattering
Acceptance map for muon detectors
Parameterized GEANT4 model of electromagnetic calorimeter showers
Kotwal \& CH, NIMA 729, 25 (2013) Includes shower losses due to finite calorimeter thickness

Hit-level model of central outer tracker Layer-by-layer resolution functions and efficiencies

Material map of inner silicon detector Includes radiation lengths and Bethe-Bloch terms



