High precision measurement of the W boson mass at CDF

Chris Hays, Oxford University

La Thuile 2023 9 March

 $D\phi = (\partial_{\mu} + ieA)$

W boson massno group indices, since it is a one-dir direction in spacetime, but it has a position in gro

with location determined by its phase.

The Lagrangian is simply the interacting scala by equation 4.6, Gaugestie apotential $F_{\mu\nu}F^{\mu\nu}$

Higgs field potential

 $m_H = v\sqrt{2\lambda} = 125 \text{ GeV}$

 $\lambda \approx 0.1$

2

 $\mathcal{L}(\phi) = \frac{1}{2} (D_{\mu} \phi^* D^{\mu} \phi + \mu^2 \phi^* \phi)$ $V = -\frac{g^2 v^2}{8} [(W_{\mu}^{+})^2 + (W_{\mu}^{-})^2]$ The minimum of $V(\phi)$ has not changed, so again the vacuum and obtain the terms in equation 4.5

covariant derivative:

$$\mathcal{L}(\delta,\epsilon,A_{\mu}^{m}) \stackrel{=}{=} \stackrel{v}{=} g \mathcal{L}_{\phi}(\delta,\epsilon) + \mathcal{L}_{A_{\mu}}(\delta,\epsilon,A_{\mu})$$

$$m_{Z} \stackrel{=}{=} \frac{v}{2} \sqrt{e^{2} \mu^{2} g^{'2}}$$

$$= \mathcal{L}_{\phi}(\delta,\epsilon) + \frac{e^{2} \mu}{2\lambda} A_{\mu} A^{\mu} - \frac{e^{2} \mu}{2\lambda}$$

$$v = 246 \frac{6}{2\sqrt{\lambda}}$$
 and $g^{\mu} = 0.64(\epsilon^2 + \delta)$

There are a number of we markable phenomena in $\frac{e^2\mu^2}{2\lambda}A_{\mu}A^{\mu} = e^2\langle\phi_0\rangle^2 A_{\mu}A^{\mu}$. The non-zero expe tion in group space, i.e. it has a specific phase. with group positions along this specific phase, ov can imagine a source with a particular U(1) phase has a potential well in the direction $\langle \phi_0 \rangle$, the ph

W boson mass

Gauge quantum corrections

SM calculation: 81358 MeV

Higgs quantum corrections

Add supersymmetry

Naively integrating to a cutoff scale Λ :

$$\Delta m_H^2 = \frac{3g^2 m_t^2}{16\pi^2 m_W^2} \Lambda^2$$

If there is no new physics up to scale Λ then we need 'fine-tuning' to cancel the quantum corrections

1% fine tuning: $\Lambda=6.6~\text{TeV}$

Motivates TeV-scale new physics

W boson mass

The SM effective field theory parameterizes general high-scale effects

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \cdots, \qquad \mathcal{L}^{(d)} = \sum_{i=1}^{n_d} \frac{C_i^{(d)}}{\Lambda^{d-4}} Q_i^{(d)} \quad \text{for } d > 4.$$

$$\mu \underbrace{\overset{p}{\underset{V_i}{\longrightarrow}}}_{V_j} \nu$$

$$\frac{\delta m_W}{m_W} = \left(0.34c_{HD} + 0.72c_{HWB} + 0.37c_{Hl3} - 0.19c_{ll1}\right)\frac{v^2}{\Lambda^2}$$

For
$$\delta m_W/m_W = 0.1$$
 % and c_{HD}=1, $\Lambda = 4.5$ TeV e.g. Z' boson

For $\delta m_W/m_W = 0.1~\%$ and c_HwB=1, $\Lambda = 6.6~{\rm TeV}$ e.g. compositeness

Smaller $c_i \rightarrow \text{smaller } \Lambda$

0 measurement

The uncertainty on M_W resulting from $\delta\Gamma_W = 2$ MeV is This D0/(2012) measurement is combined with a previous

last co Dfn: Merod METAS LOREMENTES incertainty that is common in the up and appressilts

Measurement overview

W bosons identified in their decays to $e\nu$ and $\mu\nu$

Mass measured by fitting template distributions of transverse momentum and mass

$$m_T = \sqrt{2p_T^{\ l} p_T} \left(1 - \cos \Delta \phi\right)$$

 p_{τ}^{ι}

$$\vec{p}_T = -(\vec{p}_T^{\ l} + \vec{u}_T)$$

Calibrations

W bosons identified in their decay to $e\nu$ or $\mu\nu$

Measurement requires precise calibrations of momentum scale and resolution

Charged lepton scale:

SL1 Y track (cm) 1

SL5 Y_{track} (cm)

First step is to align the tracker system

35

-351

(mµ) D

Determine individual 'sensor' positions by minimizing χ^2 difference between sensor and reconstructed track positions using cosmic-ray and collision data

CDF: 10k drift-chamber degrees of freedom (shift & rotation for each of 2520 cells at each endplate)

SL0 Y_{track} (cm) ¹

 $\sigma = 4327 \pm 7 \mu rad$

Second step is to correct for biases unconstrained by alignment procedure

Use data from resonance decays to muons and electrons

Correct curvature as function of polar angle using electrons from $W \rightarrow e\nu$ and $Z \rightarrow ee$ decays Use J/ψ , Υ , and Z decays to correct for tracker length, field nonuniformities, endplate twists, and amount of material upstream of drift chamber

θ> 1

Third step is to calibrate the momentum scale using J/ψ , Υ , and Z decays to muons

Z boson mass in the muon decay channel is measured to be

$$M_Z = 91\ 192.0 \pm 6.4_{stat} \pm 4.0_{sys}$$
 MeV

The most precise measurement of the Z boson mass at a hadron collider

Uncertainty is 3.6 times that of LEP

Electron momentum calibration

First step is to correct the response variations in data

Use ratio of calorimeter energy to track momentum (E/p) to remove response variations with time and position $\frac{8}{3}$ within tower and in pseudorapidity

Second step is to simulate the energy loss

Tune the amount of upstream material using E/p from $W \rightarrow e\nu$ events Correct the downstream energy leakage using E/p

Thickness (x_0)	Number of lead sheets
17.9	30
18.2	30
18.2	29
17.8	27
18.0	26
17.7	24
18.1	23
17.7	21
18.0	20
	17.9 18.2 18.2 17.8 18.0 17.7 18.1 17.7

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 electron leakage fraction

25 GeV

50 GeV

100 GeV

Kotwal & CH, NIMA 729, 25 (2013)

Electron momentum calibration

^{-1.6}0 0.2 $_{< \text{GeV}/p_{-}^{\mu} >} 0.4$ Z boson mass in the electron decay channel measured to be

 $M_{\chi^2} \stackrel{\times \pm 0^3 91}{_{\chi^2/\text{dof} = 33/30}} 194.3 \pm 13.8_{stat} \pm 7.6_{sys} \text{ MeV}$ $\chi^{2/\text{dof} = 33/30}$ $P_{\chi^2} = 29\%$ $P_{\kappa s} = 88\%$ Consistent with measurement in muon channel

Lower precision due to calorimeter dead regions

Calibrations

13

Measurement requires precise calibrations of momentum scale and resolution

$$\vec{p}_T = -(\vec{p}_T^{\ l} + \vec{u}_T)$$

Recoil momentum calibration

 ϕ_{μ}

First step is data uniformity corrections

Align calorimeter relative to the beam axis to remove any modulation in the recoil direction

Second step is the reconstruction of the recoil

Remove custom tower windows traversed by electrons or muons

Remove corresponding recoil energy in simulation using a distribution from towers rotated by 90° Validate the procedure by studying towers rotated by 180°

Recoil momentum calibration

Third step is the calibration of the recoil response

Scale generated recoil to balance p_T^Z and check observed response R_{rec}

Recoil momentum validation

 $m_T \approx 2p_T \sqrt{1 + u_{||}/p_T} \approx 2p_T + u_{||}$

W boson recoil distributions validate the model

 $\mu = 1 \pm 2 \text{ MeV}$

 σ = 5398 ± 3 MeV

S

Most important is the recoil projected along the charged-lepton's momentum (u_{11})

 σ = 5432 ± 3 MeV

 $\mu = 11 \pm 3 \text{ MeV}$

 σ = 5398 ± 2 MeV

 σ = 5434 ± 3 MeV

W boson production

Transverse mass insensitive to p_T^W to first order O(1 MeV) change in m_W for each % change in p_T^W from 0-30 GeV

Lepton p_T distributions more sensitive to p_T^W

Generate events with Resbos: non-perturbative parameters & NNLL resummation

Z boson p_T constrains non-perturbative parameter(s) Determine $p_T^Z \rightarrow p_T^W$ uncertainty using DYQT perturbative & resummation scale variations Use observed W recoil spectrum to constrain scale variations Similar uncertainty between correlating W & Z scales and not correlating them

 10^{3}

Lepton identification

No lepton isolation requirement in trigger or offline selection High efficiency with little recoil dependence

Backgrounds

Most challenging background comes from hadrons misreconstructed as leptons (0.2-0.3%)

W boson mass measurement

Combination	m_T :	fit	p_T^ℓ f	it	$p_T^{ u}$ f	ìt	Value (MeV)	χ^2/dof	Probability
	Electrons	Muons	Electrons	Muons	Electrons	Muons			(%)
$\overline{m_T}$	\checkmark	\checkmark					$80\ 439.0\pm9.8$	1.2 / 1	28
p_T^ℓ			\checkmark	\checkmark			$80\ 421.2 \pm 11.9$	0.9 / 1	36
$p_T^{ u}$					\checkmark	\checkmark	$80\ 427.7 \pm 13.8$	0.0 / 1	91
Electrons	\checkmark		\checkmark		\checkmark		$80\ 424.6 \pm 13.2$	3.3 / 2	19
Muons		\checkmark		\checkmark		\checkmark	$80\ 437.9 \pm 11.0$	3.6 / 2	17
All	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$80\ 433.5 \pm 9.4$	7.4 / 5	20

Fit difference	Muon channel	Electron channel
$M_W(\ell^+) - M_W(\ell^-)$	$-7.8 \pm 18.5_{\rm stat} \pm 12.7_{\rm COT}$	$14.7 \pm 21.3_{\text{stat}} \pm 7.7_{\text{stat}}^{\text{E/p}} \ (0.4 \pm 21.3_{\text{stat}})$
$M_W(\phi_\ell > 0) - M_W(\phi_\ell < 0)$	$24.4 \pm 18.5_{\rm stat}$	$9.9 \pm 21.3_{\text{stat}} \pm 7.5_{\text{stat}}^{\text{E/p}} (-0.8 \pm 21.3_{\text{stat}})$
$M_Z(\text{run} > 271100) - M_Z(\text{run} < 271100)$	$5.2 \pm 12.2_{\mathrm{stat}}$	$63.2 \pm 29.9_{\text{stat}} \pm 8.2_{\text{stat}}^{\text{E/p}} (-16.0 \pm 29.9_{\text{stat}})$

W boson mass measurements

Summary

The W boson mass is a sensitive quantity to high-scale physics

Measurement with <10 MeV precision (~0.01%) achieved using the complete CDF data set

Result of >20 years of experience with the CDF II detector

Surprising 0.1% deviation from SM motivates expanded study of m_W measurements and procedures

Backup

	2.2/fb result	
Distribution	M_W (MeV)	$\chi^2/d.o.f.$
$W \rightarrow e\nu$		
m_T	80408 ± 19	52/48
$p_T^{\hat{\ell}}$	80393 ± 21	60/62
p_T^{ν}	80431 ± 25	71/62
$W \to \mu \nu$		
m_T	80379 ± 16	57/48
p_T^{ℓ}	80348 ± 18	58/62
p_T^{ν}	80406 ± 22	82/62

background fractions

	Fraction	δM_W (MeV)				
Source	(%)	m_T fit	p_T^{μ} fit	p_T^{ν} fit		
$Z/\gamma^* \to \mu\mu$	7.37 ± 0.10	1.6(0.7)	3.6(0.3)	0.1(1.5)		
$W \to \tau \nu$	0.880 ± 0.004	0.1 (0.0)	0.1 (0.0)	0.1 (0.0)		
Hadronic jets	0.01 ± 0.04	0.1 (0.8)	-0.6(0.8)	2.4(0.5)		
Decays in flight	0.20 ± 0.14	1.3(3.1)	1.3(5.0)	-5.2(3.2)		
Cosmic rays	0.01 ± 0.01	0.3(0.0)	0.5~(0.0)	0.3(0.3)		
Total	8.47 ± 0.18	2.1(3.3)	3.9(5.1)	5.7(3.6)		

	Fraction	δM_W (MeV)		
Source	(%)	m_T fit	p_T^e fit	p_T^{ν} fit
$Z/\gamma^* \to ee$	0.134 ± 0.003	0.2(0.3)	0.3(0.0)	0.0(0.6)
$W \to \tau \nu$	0.94 ± 0.01	0.6(0.0)	0.6(0.0)	0.6~(0.0)
Hadronic jets	0.34 ± 0.08	2.2(1.2)	0.9(6.5)	6.2(-1.1)
Total	1.41 ± 0.08	2.3(1.2)	1.1 (6.5)	6.2(1.3)

W boson production and decay

Parton distributions impact the measurement through lepton acceptance

Restriction in η reduces the fraction of low-p_T leptons

Small correction applied to update to NNPDF3.1 NNLO PDF

The set with the most W charge asymmetry measurements at the time

Uncertainty determined using a principal component analysis on the replica set

Measurement sensitive to ~15 eigenvectors

Leading 25 eigenvectors used to estimate uncertainty (3.9 MeV)

Three general NNLO PDF sets (NNPDF3.1, CT18, and MMHT14) have a range of ± 2.1 MeV from mean

W+ initial	Туре	Pythia LO	Madgraph LO	Madgraph NLO
u dbar	V-V	81.7%	82.0%	82.7%
dbar u	S-S	8.9%	9.0%	8.8%
u sbar	V-S	1.6%	1.9%	1.8%
sbar u	S-S	0.3%	0.3%	0.3%
c sbar	S-S	2.9%	2.9%	-
sbar c	S-S	2.9%	2.9%	-
c dbar	S-V	0.7%	0.7%	-
dbar c	S-S	0.2%	0.2%	-
u g	v-g		-	3.7%
g dbar	g-v		-	1.8%
g u	g-s		-	0.4%
dbar g	s-g		-	0.5%
g sbar	g-s		-	0.02%
sbar g	s-g		-	0.02%
				26

Photos resummation with ME corrections used to model final-state photon radiation

validated by studying the average radiation in EM towers around the charged lepton, and with the Z mass measurement

Combination and compatibility of m_w measurements

Working group to combining the measurements from CDF, D0, ATLAS, LHCb, and the LEP experiments

Update measurements to a common PDF set and a common calculation of W boson polarization Simulate events with custom fast simulations

Measurement updates

updates relative to 2.2/fb result

Method or technique	impact
Detailed treatment of parton distribution functions	+3.5 MeV
Resolved beam-constraining bias in CDF reconstruction	$+10 { m MeV}$
Improved COT alignment and drift model [65]	uniformity
Improved modeling of calorimeter tower resolution	uniformity
Temporal uniformity calibration of CEM towers	uniformity
Lepton removal procedure corrected for luminosity	uniformity
Higher-order calculation of QED radiation in J/ψ and Υ decays	accuracy
Modeling kurtosis of hadronic recoil energy resolution	accuracy
Improved modeling of hadronic recoil angular resolution	accuracy
Modeling dijet contribution to recoil resolution	accuracy
Explicit luminosity matching of pileup	accuracy
Modeling kurtosis of pileup resolution	accuracy
Theory model of p_T^W/p_T^Z spectrum ratio	accuracy
Constraint from p_T^W data spectrum	robustness
Cross-check of p_T^Z tuning	robustness

Future possibilities

Recoil tuning

Fine-tune calorimeter response corrections in data Calibrate a shower Monte Carlo

Recoil validation

Compare W & Z response in events with a single lepton (remove any additional lepton) Compare W & Z energy flows

Event generation

Generate events using a higher-order calculation Validate p_T^w using high/low p_T^I asymmetry Validate PDF using low p_TI region and rapidity-dependent mass fits

Event selection

Vary lepton id (add isolation)

Analysis updates

Identify the effect of each analysis change in the muon channel

Luminosity & time dependence

Fit mass in subsets in time or luminosity

Incortaintiae

Source of systematic		m_T fit			p_T^ℓ fit			p_T^{ν} fit	
uncertainty	Electrons	Muons	Common	Electrons	Muons	Common	Electrons	Muons	Common
Lepton energy scale	5.8	2.1	1.8	5.8	2.1	1.8	5.8	2.1	1.8
Lepton energy resolution	0.9	0.3	-0.3	0.9	0.3	-0.3	0.9	0.3	-0.3
Recoil energy scale	1.8	1.8	1.8	3.5	3.5	3.5	0.7	0.7	0.7
Recoil energy resolution	1.8	1.8	1.8	3.6	3.6	3.6	5.2	5.2	5.2
Lepton $u_{ }$ efficiency	0.5	0.5	0	1.3	1.0	0	2.6	2.1	0
Lepton removal	1.0	1.7	0	0	0	0	2.0	3.4	0
Backgrounds	2.6	3.9	0	6.6	6.4	0	6.4	6.8	0
p_T^Z model	0.7	0.7	0.7	2.3	2.3	2.3	0.9	0.9	0.9
p_T^W/p_T^Z model	0.8	0.8	0.8	2.3	2.3	2.3	0.9	0.9	0.9
Parton distributions	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
QED radiation	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Statistical	10.3	9.2	0	10.7	9.6	0	14.5	13.1	0
Total	13.5	11.8	5.8	16.0	14.1	7.9	18.8	17.1	7.4

Electron momentum calibration

.002

Recoil in W & Z events

Recoil projections in W events

Parameter	Description	Source	m_T	p_T^ℓ	p_T^{ν}
a	average response	Fig. S23	-1.6	-2.9	-0.2
b	response non-linearity	Fig. S23	-0.8	-2.0	0.7
Response			1.8	3.5	0.7
N_V	spectator interactions	Fig. S24	0.5	-3.2	3.6
$s_{ m had}$	sampling resolution	Fig. S24	0.3	0.3	0.8
$f_{\pi^0}^4$	EM fluctuations at low u_T	Fig. S25	-0.3	-0.2	-1.0
$f_{\pi^0}^{15}$	EM fluctuations at high u_T	Fig. S25	-0.3	-0.3	-0.2
α	angular resolution at low u_T	Fig. S26	1.4	0.1	2.5
β	angular resolution at intermediate u_T	Fig. S26	0.2	0.1	0.7
γ	angular resolution at high u_T	Fig. S26	0.3	0.3	0.7
f_2^a	average dijet component	Fig. S27	0.1	-1.1	0.8
f_2^s	variation of dijet component with u_T	Fig. S27	-0.1	-0.2	-0.1
k_{ξ}	average dijet resolution	Fig. S28	-0.1	0.1	-0.3
δ_{ξ}	fluctuations in dijet resolution	Fig. S28	-0.2	0.2	-1.1
A_{ξ}	higher-order term in dijet resolution	Fig. S28	0.1	-1.0	0.7
μ_{ξ}		Fig. S28	-0.5	-0.4	-0.9
ϵ_{ξ}	n	Fig. S28	0.1	-0.2	0.4
S_{ξ}^+		Fig. S28	0.5	-0.4	1.4
$\tilde{S_{\xi}^{-}}$	u	Fig. S28	-0.3	-0.2	-0.5
q_{ξ}	II	Fig. S28	-0.2	0.0	0.2
Resolution		~	1.8	3.6	5.2

Recoil reconstruction in muon channel

Third step is to calibrate the scale using Υ decays to muons Compare fit results with and without constraining the track to the collision point

Source	J/ψ (ppm)	Ύ (ppm)	Correlation $(\%)$
QED	1	1	100
Magnetic field non-uniformity	13	13	100
Ionizing material correction	11	8	100
Resolution model	10	1	100
Background model	7	6	0
COT alignment correction	4	8	0
Trigger efficiency	18	9	100
Fit range	2	1	100
$\Delta p/p$ step size	2	2	0
World-average mass value	4	27	0
Total systematic	29	34	16 ppm
Statistical NBC (BC)	2	13(10)	0
Total	29	36	16 ppm

First step is to align the drift chamber (the "central outer tracker" or COT)

Two parameters for the electrostatic deflection of the wire within the chamber constrained using difference between fit parameters of incoming and outgoing cosmic-ray tracks

Track momentum calibration

Residual tracker misalignments studied using difference in E/p between electrons and positrons

Correction as a function of polar angle applied to measured tracks from W and Z decays

Linear dependence on cot theta would cause a bias in the mw mass fit

No linear correction required, statistical precision from E/p constrains the bias to <0.8 MeV

Detector simulation

Developed custom simulation for analysis Models ionization energy loss, multiple scattering, bremsstrahlung, photon conversion, Compton scattering

Acceptance map for muon detectors

Parameterized GEANT4 model of electromagnetic calorimeter showers Includes shower losses due to finite calorimeter thickness

Kotwal & CH, NIMA 729, 25 (2013)

Hit-level model of central outer tracker Layer-by-layer resolution functions and efficiencies

Material map of inner silicon detector Includes radiation lengths and Bethe-Bloch terms

