

Electroweak Physics at LHCb Ross Hunter

The University of Warwick, U.K. on behalf of the LHCb collaboration

Les Rencontres de Physique de la Vallée d'Aoste 6th -11th March 2023

European Research Council Established by the European Commission

Contents

- $\circ\,$ Measurement of the W boson mass with 2016 data,
- $\,\circ\,$ Future prospects for m_W measurements from LHCb,
- Update with full Run-2 (2016-2018) dataset of the $Z \rightarrow \mu\mu$ differential cross section,
- $\,\circ\,$ First measurement of the $Z\to\mu\mu$ angular coefficients at forward pseudorapidities of pp collisions,
- Search for the rare radiative decays $W^{\pm} \rightarrow D_s^{\pm} \gamma$ and $Z \rightarrow D^0 \gamma$,
- Measurements coming in the near future...

The LHCb Experiment in Run 2

Int. J. Mod. Phys. A 30. 1530022 (2015)

JINST 3 (2008) S08005

- LHCb is a single-arm, forward spectrometer covering 2 < η < 5, designed for heavy flavour physics,
- Excellent tracking performance allows for high-precision EW tests [<u>Results</u>].

W boson mass measurements

m_W : context

• Comparing indirect SM predictions with direct m_W measurements constrains new physics.

 $\Delta m_W = 6$ MeV,

• Only other LHC measurement: EPJC 78 (2018) 110

 $\Delta m_W^{ATLAS} = 19$ MeV.

 Historically-limiting PDF uncertainties expected to anti-correlate in a ATLAS/CMS-LHCb average. <u>EPJC 75 (2015) 601</u>

La Thuile 2023

80300

80400

Ross Hunter, University of Warwick

80100

80200

80500 *m*_w [MeV]

m_W : strategy

• $W \rightarrow \mu \nu$ gives a single, high- p_T , isolated muon • (LHCb doesn't reconstruct missing energy).

- p_T^{μ} peaks at ~ $m_W/2$, \rightarrow extract m_W in a template fit to the q/p_T^{μ} distribution.
- O(10 MeV) determination $\leftrightarrow O(0.1\%)$ knowledge of p_T^{μ} shape.

- Any mismodelling of detector response (e.g. misalignments, momentum resolution) or underlying physics (simulated p_T^W , QED FSR) can bias m_W at this scale.
- Given challenging theoretical uncertainties:

1) A proof-of-principle measurement with the 2016 data, 2) A full-Run-2 measurement targeting $\Delta m_W \approx 20$ MeV (approx. as precise as ATLAS).

 m_W : central fit result

• Simultaneous fit to $W q/p_T^{\mu}$ and $Z \phi^*$: Δm_W (stat) = 23 MeV.

- Leading systematic uncertainties from theoretical sources: PDFs (9 MeV), p_T^W model (11), A_i predictions (10), QED FSR (7),
- Central result is average from <u>NNPDF31</u>, <u>CT18</u> and <u>MSHT20</u> PDF sets.

$$\phi^* \equiv \tan\left(\frac{\pi - \Delta\phi}{2}\right) / \cosh\left(\frac{\Delta\eta}{2}\right) \sim \frac{p_T}{M}$$

6

La Thuile 2023

m_W result in context

Prospects for m_W measurements from LHCb

- 1) A proof-of-principle measurement with the 2016 data, [Published: <u>JHEP 01 (2022) 036</u>] 2) A full-Run-2 measurement targeting $\Delta m_W \approx 20$ MeV (approx. as precise as ATLAS).
- 2016 analysis had 1.7 fb⁻¹. Further ~4 fb⁻¹ of Run-2 data to add → Δm_W (*stat*) ≈ 14 MeV.
- $\circ~$ Experimental systematics will reduce with more study and data.
- QCD predictions with higher perturbative accuracy are available e.g. from DYTurbo:

Measurement of $Z \rightarrow \mu\mu$ differential cross section

(JHEP 07 (2022) 026; full Run-2 update on JHEP 09 (2016) 136)

La Thuile 2023

$Z \rightarrow \mu\mu$ cross section

High-precision test of QCD-EW predictions,
(at same level as experimental precision)

• Z decays in LHCb are highly boosted \rightarrow access PDFs in region (high/low x) complementary to ATLAS/CMS,

• Full Run 2 data: $L = 5.1 \pm 0.1$ fb⁻¹,

• High-purity sample: $N_{bkg}/N_{sig} \sim 1.5\%$,

$$\frac{d\sigma(Z \to \mu\mu)}{dy}_{i} = \frac{N(Z)_{i} \cdot f_{i}^{Z}(FSR)}{L \cdot \varepsilon_{i} (rec) \cdot \Delta y_{i}}$$

La Thuile 2023

Single-differential cross sections: y_Z

- Single-differential cross section extracted in p_T^Z , y^Z and ϕ^* ,
- Predictions from RESBOS (NLO in QCD + resummation) and FEWZ (NNLO in QCD) agree on overall scale, but are shifted to slightly lower (higher) rapidities than the data.

Single-differential cross sections: p_T^Z

- $d\sigma/dp_T^Z$ at low p_T^Z a stringent test of QCD due to presence of large logs (~ $\log(p_T^Z/m_Z)$),
- $\,\circ\,$ Reasonable agreement of data with predictions, with RESBOS preferring a slightly harder p_T^Z distribution:

$Z \rightarrow \mu\mu$ inclusive cross section

 $\sigma(Z \rightarrow \mu \mu) = 196.4 \pm 0.2 \; (stat) \pm 1.6 \; (syst) \pm 3.9 \; (lumi) \; \mathrm{pb} = 196.4 \pm 4.2 \; \mathrm{pb}$

- Uncertainty dominated by uncertainty in luminosity measurement,
- $\circ~$ In good agreement with previous measurement and theoretical predictions.

La Thuile 2023

Measurement of $Z \rightarrow \mu\mu$ angular coefficients

Phys. Rev. Lett. 129 (2022) 091801

Measurement of the $Z \rightarrow \mu\mu$ angular coefficients

• Dimuon angular distribution in $Z \rightarrow \mu\mu$ expressed (at Born level) in 8 coefficients A_i :

$$\frac{d\sigma}{d\cos\theta \ d\phi} \propto (1 + \cos^2\theta) + \frac{1}{2}A_0(1 - 3\cos^2\theta) + A_1\sin 2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin 2\phi + A_6\sin 2\theta\sin\phi + A_7\sin\theta\sin\phi$$

• Direct probe of the *Z*-boson polarisation in $pp \rightarrow$ important test of QCD at EW scales.

• A_i extracted with unbinned maximum likelihood fit to muon $\cos\theta$ and ϕ .

Collins-Soper frame

Measurement of the $Z \rightarrow \mu\mu$ angular coefficients

- Results, unfolded to Born level, as function of p_T^Z :
- $\Delta A_4 = A_4 mean(A_4)$ decouples measurement from the value of the weak mixing angle.
- Statistically-dominated.
- Compared with 4 sets of theoretical predictions,
 - (both fixed-order in QCD and incl. analytic resummation)
- Good general agreement is found, although PYTHIA (LO) descr. is poor in some regions.

Constraining non-perturbative QCD with A_2

- Non-perturbative QCD spin-momentum correlations between $q\bar{q}$ in $q\bar{q} \rightarrow Z$ are described by p_T -dependent (TMD) Boer-Mulders PDFs.
- ∘ $A_2 \propto$ convolution of TMD PDFs → this measurement can improve constraints on this nonperturbative QCD phenomenon.
- Broad agreement seen with generator predictions, except at low p_T^Z in low $m_{\mu\mu}$.

La Thuile 2023

Ross Hunter, University of Warwick

Search for the rare decays $W^{\pm} \rightarrow D_s^{\pm} \gamma$ and $Z \rightarrow D^0 \gamma$

- Rare radiative decays of W/Z unobserved,
- SM $B(W/Z \rightarrow h\gamma) \sim 10^{-6} 10^{-15}$; enhanced in some NP models,
- LHCb ideally suited for hadronic final states \rightarrow use $h = D_s^+ \rightarrow K^+ K^- \pi^+$ and $h = D^0 \rightarrow K^+ \pi^-$.
- ECAL saturation means inv. mass is poorly modelled; instead identify signal with the *pseudomass*:

$$m(M\gamma) = \sqrt{2p^{M} p_{\rm T}^{M} \frac{p^{\gamma}}{p_{\rm T}^{\gamma}} (1 - \cos \theta)},$$

EPJC 81 (2021) 3, 251

• No signal observed - set world's best limit on both decays:

$$B(W^{\pm} \to D_s^{\pm}\gamma) < 6.5 \times 10^{-4},$$

$$B(Z \to D^0\gamma) < 2.1 \times 10^{-3}$$

La Thuile 2023

¹18

Coming soon to a conference near you...

In the near future:

- $Z \rightarrow \mu\mu$ differential cross section at $\sqrt{s} = 5.02 \text{ TeV}$
- Test of LFU with $R_{\tau\mu} = B(W \to \tau\nu)/B(W \to \mu\nu)$,
- Measurement of the weak mixing angle via A_{FB} in $Z \rightarrow \mu \mu$

A little further ahead...

- $\circ~$ Measurement of the W boson mass with the full Run 2 dataset
- $\circ~W \rightarrow \mu \nu$ differential cross section at $\sqrt{s} = 5.02, 13~{\rm TeV}$
- $\,\circ\,$ Measurement of the Z boson mass.

Summary and outlook

- LHCb continues to deliver a strong programme of high-precision electroweak measurements:
 - Proof-of-principle measurement of m_W with $\Delta m_W = 32$ MeV; large expected impact in LHC-wide combination,
 - First measurement of the $Z \rightarrow \mu\mu$ angular coefficients in the forward region of *pp* collisions,
 - Measurement of the $Z \rightarrow \mu\mu$ cross section with the full Run 2 dataset.
- World's-best limits on rare decays $W^{\pm} \rightarrow D_s^{\pm} \gamma$ and $Z \rightarrow D^0 \gamma$ outline LHCb's potential as a discovery experiment,
- In the near future: high-precision LFU tests in *W* decays, $Z \rightarrow \mu\mu$ cross section at 5 TeV & a measurement of the weak mixing angle,
- $\,\circ\,$ Looking (slightly) further a head: m_W measurement that rivals ATLAS for the most precise at the LHC so far.

Thank you for your attention. Any questions?

Backup

La Thuile 2023

m_W : tuning QCD predictions on-the-fly

- At the Born level (before QED FSR):
- Predictions of angular coefficients A_i taken from DYTurbo at $O(\alpha_s^2)$.
- Floated a scale factor in the fit to absorb the (dominating) uncertainty on the A_3 prediction.
- POWHEG+Pythia8 provided $\frac{d\sigma^{unpol}}{dp_T^W dy dM}$,
- Previous m_W measurements rely on tuning to p_T^Z . Does this tune hold for p_T^W ?
- Variations in α_s and k_T^{intr} affect p_T^{μ} differently to variations in m_W .
- ⇒ Floated these QCD parameters in a simultaneous fit to $W q/p_T^{\mu}$ and $Z \phi^*$.

m_W : novel *pseudomass* alignment

- Biases in p_T^{μ} can originate from detector misalignments. Fix with:
 - 1) Custom alignment for high- p_T muons,
 - 2) Finer, analysis-level curvature (q/p) corrections from the "pseudomass" method on $Z \rightarrow \mu\mu$.
- Differences in *M*⁺ and *M*⁻ allow for mapped curvature bias corrections across the detector.
- Simulation is then smeared to account for mismodelled momentum scale and resolution.

Inspired by <u>PRD 91, 072002 (2015)</u>

m_W : uncertainty breakdown

Source	Size [MeV]	
Parton distribution functions	9.0	Average of NNPDF31, CT18, MSHT20
Theory (excl. PDFs) Total	17	
Transverse momentum model	11	Envelope from five different models
Angular Coefficients	10	Uncorrelated scale variation
QED FSR model	7	Envelope of Pythia8, Photos and Herwig7
Additional electroweak corrections	5	Tested with POWHEGew
Experimental Total	10	
Momentum scale and resolution modelling	7	
Muon ID, trigger and tracking efficiency	6	Includes statistical uncertainties, details of the methods (e.g. binning,
Isolation efficiency	4	smoothing) and dependence on
QCD background	2	externar inputs.
Statistical	23	
Total	32	

Z angular coefficients as function of *y*

Double-differential $Z \rightarrow \mu\mu$ cross section

