Top measurements and properties

Matteo Negrini INFN Bologna

NFN

On behalf of the CMS and ATLAS Collaborations

La Thuile, March 5-11, 2023

Why top quark physics?

- The top quark is the heaviest elementary particle in the Standard Model
- Very short lifetime: $\tau_{top} \sim 10^{-25}$ s << $t_{had} \sim 10^{-24}$ s Unique opportunity to study a "bare" quark
- Precision tests of the SM, thanks to
 - large samples collected at the LHC
 - advances in theoretical calculations
- Connections with fundamental questions (and possibly with BSM physics)

Many new top quark physics results obtained in the last year. The complete list is available at these links: ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Top quark properties

- Precision measurements and tests of the SM parameters
- Latest results in this talk:
 - Top quark mass
 - Charge asymmetry in top anti-top pair production
 - W helicity fractions in top quark decay
- Top production cross-sections and searches for new physics effects presented in other talks at this conference:
 - → Carlos Vico: tX and ttX production
 - → Luca Martinelli: Measurement of top-quark pair inclusive and differential cross-sections in the eµ channel with ATLAS
 - Kelci Mohrman: Search for new physics in top quark production with additional leptons using the framework of effective field theory
 - → Sahibjeet Singh: top-quark pair production cross-section in the single-lepton channel at $\sqrt{s}=5.02$ TeV with ATLAS

Top quark mass

- m_{top} is a fundamental parameter of the SM
- Enters in global fits to test the internal consistency of the SM
- Has implications on the fate of the universe (assuming the validity of the SM up to very large energy scales)
- The top quark is not a free particle. Its mass can be determined through comparison with theoretical calculations:
 - "Direct" measurements: reconstruct invariant mass of decay products, or some other quantity highly sensitive to m_{top}, compare with MC calculations (m_{top}^{MC})
 - "Indirect" measurements: measure production crosssection (also differential) that can be compared to firstprinciple calculations (m_{top}^{POLE})

Overview of top quark mass measurements

Direct measurements

~0.5 GeV (0.3%)

Indirect measurements

m_{top} dilepton channel

13 TeV - 139 fb⁻¹ ATLAS-CONF-2022-058

- DNN used to match lepton and b-jet \rightarrow DNN>0.65 selected to improve precision
- Using only the lb pair with larger $p_{\text{T,Ib}}$ to reduce signal modeling and jet-related uncertainties
- Template fit to the m_{lb} distribution

m_{top} with profile likelihood approach

13 TeV - 36 fb⁻¹

CMS-PAS-TOP-20-008

Jet mass distribution and m_{top}

13 TeV - 138 fb⁻¹

Boosted top production, I+jets chan. \rightarrow decay products tend to collimate in a large-R jet (XCone R=1.2)

- \rightarrow The large-R jet mass peak position is sensitive to m_t
- Using top quark decays with $p_T > 400$ GeV, unfolded at particle level
- Dedicated JMS calibration exploiting the mass of the two XCone sub-jets from hadronic W decay

 $m_t = 172.76 \pm 0.22 (stat) \pm 0.57 (exp) \pm 0.48 (model) \pm 0.24 (theo) GeV = 172.76 \pm 0.81 GeV$

Sensible improvement with respect to previous mt measurements using boosted tops

m_{top} from tt+jet

- The distribution of invariant mass of tt+jet can be computed analytically. Sensitivity to mt^{pole} in the production threshold region.
- Normalized p distribution measured using the dileptonic tt channel (2 leptons, 3 jets)
- NN event classification + NN regression used in the reconstruction of ρ (inputs include reconstructed m_{tt+jet}) $172.94 \pm 1.37 \, GeV$
- χ² fit to NLO calculations used to extract mt^{pole}

13 TeV - 36.3 fb⁻¹

CMS-PAS-TOP-21-008

Charge asymmetry in tt production

- An asymmetry between t and \bar{t} originates from higher order contributions in the process $q\bar{q} \rightarrow t\bar{t}$: top (anti-)quark preferentially produced in the direction of incoming (anti-)quark
- At the LHC:
 - The main production mode is $gg \to t\bar{t},$ that is symmetric
 - The original valence quark momentum is in average larger than that of the sea antiquark. This implies more forward rapidity t and more central rapidity \bar{t}
 - Also, a leptonic asymmetry can be defined in the dileptonic channel (top reconstruction not required but asymmetry slightly diluted)

$$\begin{split} A_{C}^{t\bar{t}} &= \frac{N\left(\Delta \left|y_{t\bar{t}}\right| > 0\right) - N\left(\Delta \left|y_{t\bar{t}}\right| < 0\right)}{N\left(\Delta \left|y_{t\bar{t}}\right| > 0\right) + N\left(\Delta \left|y_{t\bar{t}}\right| < 0\right)} \Delta \left|y_{t\bar{t}}\right| = \left|y_{t}\right| - \left|y_{\bar{t}}\right| \\ SM \text{ calculation:} \\ NNLO(QCD) + NLO(EW) \\ A_{C}^{t\bar{t}} &= \frac{N\left(\Delta \left|\eta_{l\bar{l}}\right| > 0\right) - N\left(\Delta \left|\eta_{l\bar{l}}\right| < 0\right)}{N\left(\Delta \left|\eta_{l\bar{l}}\right| > 0\right) + N\left(\Delta \left|\eta_{l\bar{l}}\right| < 0\right)} \Delta \left|\eta_{l\bar{l}}\right| = \left|\eta_{l}\right| - \left|\eta_{\bar{l}}\right| \\ PRD 98 (2018) 014003 \end{split} \begin{array}{c} SM \text{ calculation:} \\ NLO(QCD) + NLO(EW) \\ A_{C}^{t\bar{t}} &= 0.0040_{-0.0001}^{+0.0002} \\ PRD 86 (2012) 034026 \end{split}$$

- BSM processes (i.e. anomalous vector or axial-vector couplings) can interfere with SM processes and alter A_c , in some cases as a function of $m_{t\bar{t}}$

Tevatron

-HC

р

qq

gg

qq

р

р

Charge asymmetry in tt production

Interpretation as limits on Wilson coefficients in SMEFT fits

Complementarity with respect to previous limits obtained from the energy asymmetry A_E (Eur. Phys. J. C 82 (2022) 374)

13 TeV - 139 fb⁻¹ arXiv:2208.12095

ATLAS

Differential m,,

 $- \Lambda^{-2} + \Lambda^{-4}$

 $A_{C}^{t\bar{t}}$ vs. NNLO QCD + NLO EW

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

- 68% CL

95% CL

Best-fit value

Charge asymmetry in boosted $t\bar{t}$

I+jets chan boosted top reconstruction optimized for $m_{t\bar{t}} > 750$ GeV. Enhanced contribution from $q\bar{q}$ initial state.

13 TeV - 138 fb⁻¹

arXiv:2208.02751

SM calculation:

NNLO(QCD)+NLO(EW)

Enhanced A_c in tt+W and tt+y

- $t\bar{t}+y$: dominant contribution arises from interference between QED ISR and FSR
- $t\bar{t}+W$: enhanced $q\bar{q}$ initial state + additional polarization of $q\bar{q}$ due to W emission

W polarization in top quark decays

- The properties of the top-quark decay vertex Wtb are determined by the V-A structure of the weak interaction in the SM
- Test compatibility with the SM of the fractions of longitudinal (f_0), left-handed (f_L) and right-handed (f_R) polarised W bosons (helicity fractions)
- W helicity fractions can be extracted from measurements of the angular distribution of the decay products of the W boson and the top quark

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} (1 - \cos^2\theta^*) f_0 + \frac{3}{8} (1 - \cos\theta^*)^2 f_L + \frac{3}{8} (1 + \cos\theta^*)^2 f_R$$

θ^{*}: angle between the momentum direction of the charged lepton from W decay and the reversed momentum direction of the b-quark from top decay, computed in the W rest frame

 $d\sigma$ measured at parton-level $\overline{\sigma}_{d\cos\theta^*}$

Systematic uncertainty dominated by the tt production modelling (choice of matrix-element generator)

 $f_0 = 0.684 \pm 0.005(stat) \pm 0.014(syst)$ $f_L = 0.318 \pm 0.003 (stat) \pm 0.008 (syst)$ $f_{R} = -0.002 \pm 0.002(stat) \pm 0.014(syst)$

13 TeV - 139 fb⁻¹

arXiv:2209.14903

Summary

- The measurement of top quark properties is a very active field of study
- Precision measurements offer the opportunity to push tests of the SM and searches for new physics effects
 - Top quark **mass**:
 - measured with several techniques
 - uncertainties routinely at sub-GeV level
 - Broad campaign of A_c measurements, exploiting different channels and topologies
 - W helicity fractions measured with unprecedented precision
- Many new results in the pipeline to be released soon

