

tX + ttX in CMS and ATLAS

Les Rencontres de Physique de la Vallée d'Aoste

Carlos Vico Villalba on behalf of the CMS and ATLAS collaborations

Inclusive tīW production at 13 TeV arXiv: 2208.06485

EFT searches in ttZ/H boosted topologies <u>arXiv: 2208.12837</u>

Inclusive and differential tW production at 13 TeV arXiv: 2208.00924

5.

Flavor-changing neutral currents between the top quark and the Z boson at 13 TeV <u>arXiv: 2301.11605</u>

Leptonic charge asymmetry production in ttw final states. 3. <u>arXiv: 2301.04245</u>

Observation of single-top quark production in association with a photon arXiv:2302.01283

6.

Search for Flavor Changing Neutral Current couplings

Search for FCNC in top quark decays. Introduction

- Couplings of top quark to lighter quarks with same charge (u, c).
- These couplings can be studied as an **Effective Field Theory** (EFT).

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{NP}^2} \sum_k \frac{C_k O_k}{k}$$

Suppressed by the scale at which new physics appear.

The strength of these couplings is given by the Wilson coefficients.

Arxiv: 2301.11605

• tZq couplings for tensor operators of the extended theory are measured in tt-like and single-top-like topologies.

Coupling	Left Hand operator		Right Hand Operator	
tZu	$C_{uW}^{(13)}$	$C_{uB}^{(13)}$	$C_{uW}^{(31)}$	$C_{uB}^{(31)}$
tZc	$C_{uW}^{(23)}$	$C_{uB}^{(23)}$	$C_{uW}^{(32)}$	$C_{uB}^{(32)}$

Search for FCNC in top quark decays. Event selection

The **baseline selection** includes three final state lepton topologies, with:

- Leptons: $p_T(\ell) > 27 \text{ GeV}$
- OSSF pair with $|m_{\ell\ell} m_Z| < 15 \text{ GeV}$
- Overlap between regions is removed by including additional cuts on top-reconstructed kinematics

tī-like

single-top-like

Search for FCNC in top quark decays. Background estimation

• A binned likelihood fit to the three BDT scores.

Observable	Vertex	Coupling	Observed	Expected
	SRs+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times 10^{-5}$
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13 \substack{+0.03 \\ -0.02}$
$ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $	tZu	RH	0.16	$0.14 \substack{+0.03 \\ -0.02}$
$ C_{\mu W}^{(23)*} $ and $ C_{\mu B}^{(23)*} $	tZc	LH	0.22	$0.20 \stackrel{+0.04}{_{-0.03}}$
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19 \substack{+0.04 \\ -0.03}$
	SR1+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	9.7×10^{-5}	$8.6^{+3.6}_{-2.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	9.5×10^{-5}	$8.2^{+3.4}_{-2.3} \times 10^{-5}$
	SR2+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	7.8×10^{-5}	$6.1^{+2.7}_{-1.7} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	9.0×10^{-5}	$6.6^{+2.9}_{-1.8} \times 10^{-5}$

• Current limits improved by a factor of 2-3 w.r.t previous ones!

Search for new physics in boosted topologies

2.00 ع م

1.50

1.25

1.00

CMS Simulation

g ello

لالله g

100

 $c_{+7} / \Lambda^2 [\text{TeV}^{-2}] =$

200

300

Search for new physics in boosted topologies. Introduction

EFT effects can be also studied in boosted topologies. A search for $t\bar{t}$ production in association with a **boosted** Z or H is presented.

CMS Simulation

 $c_{\varphi tb} / \Lambda^2 [TeV^{-2}] =$

200

• Very sensitive to EFT couplings at high transverse momentum of Z/H bosons.

- 1.0 -- 1.2

400

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \sum_{d,i} \frac{c_i^{(u)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

--- 6.0 --- 10.0 --- 12.0

300

400

 (\mathbf{A})

13 TeV

500

p^H_T [GeV]

600

• The goal is to target single-lepton final states with $Z/H \rightarrow b\overline{b}$.

p^Z_T [GeV]

500

13 TeV

 $\sigma_{\sf EFT}/\sigma_{\sf SN}$

2.00

1.75

1.50

1.25

1.00

g

100

• MVAs are used to discriminate from tt+jets background.

600

Search for new physics in boosted topologies. Analysis strategy

- Large Lorentz boost decay products will be collimated and may be reconstructed as a single "bigger" jet than resolved ones.
- The large background coming from tī+jets makes it challenging to accurately reconstruct the bb pair from the bosons decay.
- MVA techniques are used in order to distinguish between $t\bar{t}Z/H \rightarrow b\bar{b}$ and $t\bar{t}+b\bar{b}$ and $t\bar{t}+LF/c\bar{c}$.

CMS Search for new physics in boosted topologies. Results on EFT constraints

• Two likelihood fits are performed for each WC: with all other WCs profiled in the fit and with all other WCs kept fixed to SM.

ttW measurements

Inclusive ttW cross section measurement at 13 TeV. Introduction

Arxiv: 2208.06485 Submitted to JHEP

<u>2ℓss strategy</u>

- A Deep Neural Network (DNN) is used to distinguish between signal and background events.
- Lepton flavors and electric charges are used to further categorize events

<u>3ℓ strategy</u>

- Twelve different categories are defined in terms of jet and b tag multiplicities, as well as the charge of the 3*l* system.
- A single observable $(m_{3\ell})$ distribution is optimized to extract ttW signal.

<u>3l</u> and <u>4l</u> control regions

• Two extra categories targetting WZ, ZZ and tt̄Z enriched regions are defined to gain better control over these backgrounds.

Inclusive ttW cross section measurement at 13 TeV. Analysis strategy.

Final ttW normalization is extracted from a **combined binned profile likelihood** fit to all $2\ell ss + 3\ell + CRs$ distributions.

Inclusive ttW cross section measurement at 13 TeV. Results.

01		SM pred <mark>iction</mark>		
Observable	Measurement	NLO + NNLL	NLO + FxFx	
$\sigma_{ m t\bar{t}W}$	$868\pm40(\mathrm{stat})\pm51(\mathrm{syst})\mathrm{fb}$	592^{+155}_{-97} (theo) fb	722_{-78}^{+71} (theo) fb	
$\sigma_{ m t\bar{t}W^+}$	$553\pm30(\mathrm{stat})\pm30(\mathrm{syst})\mathrm{fb}$	384_{-33}^{+53} (theo) fb	475^{+46}_{-52} (theo) fb	
$\sigma_{ m t\bar{t}W^-}$	$343\pm26(\text{stat})\pm25(\text{syst})\text{fb}$	198^{+26}_{-17} (theo) fb	247^{+24}_{-27} (theo) fb	
$\sigma_{t\bar{t}W^+}/\sigma_{t\bar{t}W^-}$	1.61 ± 0.15 (stat) $^{+0.07}_{-0.05}$ (syst)	$1.94 {}^{+0.37}_{-0.24}$ (theo)	$1.92^{+0.27}_{-0.29}$ (theo)	

CN

• Factor two of improvement on the systematic uncertainty with respect to 2016 measurement!

Source	Uncertainty [%]
Experimental uncertainties	
Integrated luminosity	1.9
b tagging efficiency	1.6
Trigger efficiency	1.2
Pileup reweighting	1.0
L1 inefficiency	0.7
Jet energy scale	0.6
Jet energy resolution	0.4
Lepton selection efficiency	0.4
Background uncertainties	
ttH normalization	2.6
Charge misidentification	1.6
Nonprompt leptons	1.3
VVV normalization	1.2
ttVV normalization	1.2
Conversions normalization	0.7
t $\bar{t}\gamma$ normalization	0.6
ZZ normalization	0.6
Other normalizations	0.5
tTZ normalization	0.3
WZ normalization	0.2
tZq normalization	0.2
tHq normalization	0.2
Modeling uncertainties	
t ī W scale	1.8
ttW color reconnection	1.0
ISR & FSR scale for ttW	0.8
$t\bar{t}\gamma$ scale	0.4
VVV scale	0.3
ttH scale	0.2
Conversions	0.2
Simulation statistical uncertainty	y 1.8
Total systematic uncertainty	5.8

15

Charge asymmetry in ttW at CMS (first steps)

• First steps towards a charge asymmetry measurement at CMS are also presented in <u>2208.06485</u>

- tTW is the only process of the tT+X family whose QCD LO contribution Arxiv: 2301.04 comes entirely from qq annihilation.
- This results in a sizable difference in the rapidity distribution of top quarks and top antiquarks.
 - Top (anti) quarks tend to be produced with more forward (central) rapidities than their counterparts.
 - The asymmetry is further enhanced due to polarization effects on the initial state W.

$$A_{\rm c}^\ell = \frac{N\left(\Delta\eta^\ell > 0\right) - N\left(\Delta\eta^\ell < 0\right)}{N\left(\Delta\eta^\ell > 0\right) + N\left(\Delta\eta^\ell < 0\right)},$$

- Thus ttw provides an excellent probe for new physics in the context of EFTs, given that Dim6 operators are sensitive to these asymmetries.
- The ATLAS experiment has recently published its most recent search for charge asymmetry in tTW leptonic final states, with the full Run 2 dataset.

* These asymmetries can also studied in other final states: arXiv: 2212.10552 (ATLAS $t\bar{t}\gamma$) and arXiv:2208.02751 (CMS boosted $t\bar{t}$)

Charge asymmetry measurements in tTW. Analysis strategy

- Baseline selection of three leptons and at least one OSSF pair.
- Selected events are classified into four SRs that differ in n_{Jet} and $n_{\text{b-tag}}$ multiplicities.
- Four additional CRs are built to control the effect of major backgrounds.

Charge asymmetry measurements in tTW. Analysis strategy

• The charge asymmetry is then extracted by performing a simultaneous binned likelihood fit to the number of observed events in the SRs and some other kinematic distributions of the CRs.

• Each region is splitted into $\Delta \eta^+ = \Delta \eta^\ell > 0$ and $\Delta \eta^- = \Delta \eta^\ell < 0$.

Single top production

tW measurements at 13 TeV. Introduction

• **the tW process** is the second most common production channel of top quarks via electroweak mechanisms (single top modes) at the LHC.

Arxiv: 2208.00924 Accepted by JHEP

- tW (NLO) interferes with tt.
 - Clearly background dominated.
 - Two methods can be used to remove the interferences: **Diagram Removal** (DR) and **Diagram Subtraction** (DS).
- Baseline selection:
 - Dilepton channel: $e^{\pm}\mu^{\mp}$.
 - Leading lepton $p_T > 25 \text{ GeV}$
 - $m_{\ell\ell} > 20 \text{ GeV}.$
 - Categorisation based on number of jets and b tags.

DR scheme is used for the nominal analysis, and the difference with respect to DS scheme is taken as an uncertainty.

tW measurements at 13 TeV. Inclusive measurement strategy.

- A BDT is used to discriminate tW from tt.
- To extract the signal, a maximum likelihood fit is performed to three distributions.

- The measured cross section is: $\sigma_{tW} = 79.2 \pm 0.8$ (stat) ± 7.1 (syst) ± 1.1 (lumi) pb.
 - Compatible with SM predictions at
 - aNNLO(QCD): $\sigma_{tW}^{SM} = 71.7 \pm 1.8$ (scale) ± 3.4 (PDF) pb [PoS DIS2015 (2015) 170]
 - $aN^{3}LO(QCD)$: $\sigma_{tW}^{SM} = 79.5 \pm 1.9$ (scale) ± 1.7 (PDF) pb [<u>JHEP 05 (2021) 278</u>].

Systematically

dominated

tW measurements at 13 TeV. Differential measurement strategy.

- The differential measurement is performed using 1j1b with a veto on the presence of loose b tags in the final state.
- Need to unfold detector effects so it is comparable with e.g. theoretical predictions.
- A fiducial region close to the measurement region is defined, and the signal is extracted bin by bin using maximum likelihood fits.
- Usually done for specific variables.
 - Leading lepton p_T
 - jet p_T

•
$$m(e^{\pm}, \mu^{\mp})$$

• $p_7(e^{\pm}, \mu^{\mp}, \mu^{\mp})$

- $\Delta \phi(e^{\pm},\mu^{\mp})$
- $p_Z(e^{\pm}, \mu^{\pm}, j)$ • $m_T(e^{\pm}, \mu^{\pm}, j, p_T^{miss})$
- The results are normalised to the fiducial cross section
- Overall agreement between data and expectations within uncertainties
- Compatible results between the DR and DS schemes.

Observation of $t\gamma$ production. Introduction

The *t* γq cross section is measured in a fiducial phase space at parton level (excluding $(t \rightarrow \ell v b \gamma) \gamma q$) and particle level.

Arxiv: 2302.01283 Submitted to PRL

Measurement region

- At least one photon.
- One lepton matched to trigger.
- One tight b tag (no additional loose b tags)
- $E_T^{miss} > 30 \text{ GeV}$
- Veto Z mass between lepton and photon

 $SR1: \ge 1 fj$

SR2: 0 fj

At least one forward jet.

NO forward jet.

Parton level

• At least one photon with $p_T \ge 20$ GeV Frixione isolated with $\Delta R < 0.2$.

Particle level

- One lepton with $p_T \ge 25 \text{ GeV}$
- At least one photon with $p_T \ge 25$ GeV.
- One b with $p_T \ge 25 \text{ GeV}$
- One neutrino not from a hadron decay

Observation of $t\gamma$ production. Results

- Neural networks are trained to separate signal from background.
 - Input variables: E_T^{miss} , kinematics of the photon, lepton, b tag and highest- p_T forward jet; and the mass of the reconstructed top quark.

$\sigma_{tq\gamma} \times \mathcal{B}(t \to \ell \nu b)$	Fiducial cross section	SM
Parton level	$688 \pm 23 \text{ (stat)}^{+75}_{-71} \text{(syst) fb}$	515 ⁺³⁶ ₋₄₂ fb
Particle level	$303 \pm 9 \text{ (stat)}^{+33}_{-32} \text{(syst) fb}$	217 ⁺²⁷ ₋₁₅ fb

Conclusions

• In this talk we have covered some of the most recent analysis regarding ttX+tX physics at the LHC from both ATLAS and CMS collaborations.

- A search for FCNC couplings between the top quark and the Z boson (ATLAS).
 - Improved constraints on EFT couplings by factor 2.
- Latest inclusive ttX cross section measurement (CMS) and dedicated charge asymmetry measurement (ATLAS).
 - Agreement with the SM within 2σ . Need to improve modelling of ttW MC.
 - Charge Asymmetry. Statistically limited. In agreement with SM.
- A search for EFT effects on boosted topologies in $t\bar{t}Z/H$ (CMS).
 - Competitive constraints on EFT couplings for boosted topologies.
- An inclusive and differential cross section measurement of the tW process (CMS).
 - Systematically dominated measurement. In agreement with SM.
- An observation of $t\gamma$ production using the full Run2 dataset of the LHC (ATLAS)
 - Verified this process as one of the rare top-quark production processes.
- There are many more results publicly available in <u>ATLAS</u> and <u>CMS</u> public websites, so check them out!
- And stay tuned for future Run3 measurements!

Thank you very much for your attention (and to the organisers)

Backup

Backup

Backup

