Paolo Meridiani

Higgs couplings and properties

HIGGS: A BROAD PHYSICS PROGRAM

What is the origin of the early **Universe inflation?**

Any imprint in cosmological observations?

Higgs discovery opened the door to a new sector of fundamental interactions

Higgs the only fundamental scalar discovered so far is linked to the most <u>fundamental OPEN questions in particle</u> physics

Studying the Higgs properties could shed light to some of these questions (especially

- in absence of direct BSM):
 - Higgs couplings (including self-coupling, more in G. Palacino's talk tomorrow)
 - Higgs total width
 - Differential/fiducial cross-sections
 - Anomalous couplings (CP-violation)
 - Additional scalars
 - BSM Higgs decays

Nature 607, 41-47 (2022)

Higgs

A LONG ROAD FOR H(125)

Since discovery stat increased x ~30

~10M Higgs produced per experiment ATLAS ~180 papers, CMS ~150 papers published/submitted on Higgs physics after discovery

Entered in the Higgs precision physics era

THE ROLE OF PRECISION

Precision: a "telescope" for BSM physics

Adapted from W. Wiesemann

Precision does not come just increasing stat !

THE ROAD TO PRECISION: EXP

Experimental results are improving beyond luminosity scaling, despite more difficult experimental conditions (pile-up)

- Continuous improvements to objects reconstruction and analysis techniques
 - ▶ Advanced machine learning making the difference especially when fighting large backgrounds: eg H→bb/cc, H→ $\tau\tau$,...
 - Clever use of larger datasets: eg improved event categorisation

THE ROAD TO PRECISION: THEORY

Huge leap in the Higgs theoretical predictions

- Most important Higgs production processes calculated at N3LO QCD (ggF, VBF)
- PDFs (also thanks to LHC data)
- Improvements also for critical backgrounds processes: e.g. tt+b(b), VV,...

Critical role of LHC Higgs XS WG

HIGGS IN THE SM

"One scalar to rule them all"

+ i # \$ 4 + h.c.

15 out of (at least) 19 free SM parameters are related to the Higgs, including the Higgs mass

Yukawa: coupling to fermions

+ $\overline{\Psi}_i \overline{\Psi}_i \psi_i \phi + h.c.$ + $\overline{\Phi}_{\mu} \phi l^2 - V(\phi)$

Higgs potential $V(\phi) = \mu^2 |\phi|^2 + \frac{1}{2}\lambda |\phi|^4$

Gauge: coupling to vector bosons

Higgs self-couples in the SM $\propto m_{H}^{2}$

HIGGS PHYSICS @ LHC RUN2

Paolo Meridiani

8

HIGGS PICTURES FROM RUN2

H→bosons

INFN

RECENT HIGHLIGHTS: 2ND GEN FERMIONS

taggers

First evidence for coupling with 2nd generation fermions

121 122 123 124 125 126 127 128 129 130

m_H (GeV)

ATLAS: **2.0** σ (1.7 exp) μ =1.2 ± 0.6 CMS: **3.0** σ (2.4 exp) μ =1.19 ± 0.43

10⁻¹120

HIGGS MASS

ATLAS Total Stat. Only $H \rightarrow ZZ^* \rightarrow 4I$ Sys. Only $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 124.51 ± 0.73 (± 0.73 Stat.) 4e 2µ2e 125.33 ± 0.50 (± 0.49 Stat.) 2e2µ 125.01 ± 0.29 (± 0.29 Stat.) 4μ 124.93 ± 0.29 (± 0.28 Stat.) Combined 124.99 ± 0.19 (± 0.18 Stat.) Run 1 + 2 124.94 ± 0.18 (± 0.17 Stat.) 124 125 126 123 127 m_{μ} [GeV]

arXiv:2207.00320

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale	±28
Electron energy scale	±19
Signal-process theory	±14

Systematics reduced by ~20% wrt previous Run2 results

Mass known already at end of Run1 at ~2‰ from ATLAS+CMS (H \rightarrow yy,ZZ)

Now ~1‰, still stat limited

Ultimate expected precision (from $H\rightarrow 4I$) ~50 MeV per experiment

HIGGS TOTAL WIDTH

(GLOBAL) HIGGS SM COMPATIBILITY

Fit data from all production modes and decays with a common signal strength wrt SM

$$\mu = \frac{\sigma \cdot BR}{(\sigma \cdot BR)_{SM}}$$

 $\begin{array}{ll} \mbox{ATLAS Run2} & \mu = 1.05 \pm 0.04 (th) \pm 0.03 (exp) \pm 0.03 (stat) \\ \mbox{CMS Run2} & \mu = 1.002 \pm 0.036 (th) \pm 0.033 (exp) \pm 0.029 (stat) \\ \mbox{ATLAS+CMS Run1} & \mu = 1.09 \pm 0.07 (sig. \ th) \pm 0.03 (bkg. \ th) \pm 0.04 (exp) \pm 0.07 (stat) \\ \mbox{JHEP 2016. 45 (2016)} \end{array}$

Theory systematics reduced by ~ a factor 2 from Run1

HIGGS PRODUCTION AND DECAYS

All consistent with SM

uncertainty <=10% for main production modes and decays

All 5 main production modes and decays >5 σ

HIGGS COUPLINGS: K-FRAMEWORK

k-factors: effective Higgs coupling modifiers (no production kinematic variations). Test compatibility with SM

Can also accomodate BSM decays (invisible or undetected) as modification of the total Higgs width

HIGGS COUPLINGS

16

RUN2 LEGACY: HIGGS COUPLES TO MASS

MORE GRANULARITY: STXS

Measure different production modes in exclusive kinematic regions

 combination of multiple decay channels

More sensitivity for BSM (eg high pT regions)

- current STXS have limited sensitivity for CPodd BSM (eg no $\Delta \phi_{jj}$ for qqH)

MORE GRANULARITY: DIFFERENTIAL

Single and double differential xsec vs $p_{\text{T}}{}^{\text{H}},\,\eta^{\text{H}},$

njet

 Best precision for fully reconstructed decays (H→yy,ZZ)

Higgs p_T: test of perturbative QCD but also sensitivity for BSM couplings

- low p_T: k_c constraints competitive/complementary to direct search for H→cc
- high p_T: probe for higher scale BSM

LOOK FOR CP VIOLATION

Higgs compatible with $J^{P}=0^{+}$ (Run1)

Room for anomalous BSM (possibly CP-violating) couplings

Exploit kinematic correlations among final state objects both in production and decay (ZZ)

 signal extraction including discriminants (MELA) between different couplings hypothesis

SUMMARY

The ATLAS/CMS Higgs Run2 legacy: entered the Higgs precision physics era

- Mass at 0.1%
- Boson couplings known at ~5%, ~10% for heaviest fermions
- Huge progress to look for 2nd generation couplings, self-coupling, anomalous BSM couplings

These performance are much better than what expected just 10 years ago: theory & experiment interactions a game changer $\frac{cMS}{10}$

Run3: double Run2 stat, ~300 fb⁻¹@13.6 TeV

From 2029 HL-LHC: up to 4000 fb⁻¹, ATLAS/CMS detector upgrades

- $-\sim$ 180M Higgs/experiment by end of HL-LHC
- Prospects are very high
- Projections keep improving (thanks to better delivered analysis sensitivities)

HIGGS SELF COUPLING

