W, Z AND QCD

Philippe Calfayan Indiana University

On behalf of the ATLAS and CMS Collaborations

La Thuile Les Rencontres de Physique de la Valle d'Aoste March 8. 2023

Ψ

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0010120.

Introduction

- Measurements of W and Z vector-boson, photon (γ), and jets production cross sections (σ) at the LHC are central in the LHC physics program in that they allow to:
 - Achieve precision tests of perturbative Quantum ChromoDynamics (pQCD)
 - Measure fundamental parameters of the Standard Model (SM)
 - Improve our understanding of Parton Density Functions (PDF)
 - Understand important background (bkg) to searches Beyond the Standard Model (BSM) and Higgs measurements
 - Provide important input to simulations
- Recent results from both CMS and ATLAS experiments are presented:
 - Inclusive γ and multijet (MJ) productions, that are dominated by QCD processes, and can be sensitive to the strong coupling constant (α_s) and the gluon (g) PDF
 - τ -leptons polarization in $\mathbb{Z} \to \tau \tau$ decays, which allow to infer the weak mixing angle $(\sin \theta_W^{eff})$
 - Rarer processes, such as W + c production, that are sensitive to strange (s) PDF

Submitted to JHEP, hep-ex/2302.00510, $\mathcal{L} = 139 \, \mathrm{fb}^{-1}$ at $13 \, \mathrm{TeV}$

- Prompt photon production: direct and fragmentation processes primarily via $qg \rightarrow q\gamma$
- Probe pQCD in cleaner environnement than MJ, less hadronization effects
- Sensitive to constrain g PDF and able to reduce its uncertainty $(E_T^{\gamma} > 250 \,\text{GeV})$
- γ isolation necessary to separate from neutral hadrons decays: E_T^{iso} around γ in fixed cone with R = 0.4 or 0.2 is constrained
- Main bkg: MJ with mis-id γ , estimated from data-driven method relying on data regions orthogonal in γ -quality and E_T^{iso}
- Total uncertainty on unfolded σ : 3 to 20% in $(E_T^{\gamma}, |\eta^{\gamma}|)$ mostly from γ energy scale, MJ modelling (R = 0.2), and pile-up (R = 0.4)

- Differential σ unfolded to particle-level, compared to SHERPA 2.2.2, and to JETPHOX and NNLOJET (with corrected parton level)
- Good predictions modelling overall
- σ larger for iso R = 0.2 than 0.4
- SHERPA (NLO) has higher σ (has parton shower, LO for 3-4 jets)
- $\sigma(R=0.2)/\sigma(R=0.4)$ modelling:
 - 0 SHERPA (NLO) has higher ratio (no explicit fragmentation calculation)

- Differential σ unfolded to particle-level, compared to SHERPA 2.2.2, and to JETPHOX and NNLOJET (with corrected parton level)
- Good predictions modelling overall
- σ larger for iso R = 0.2 than 0.4
- SHERPA (NLO) has higher σ (has parton shower, LO for 3-4 jets)
- $\sigma(R=0.2)/\sigma(R=0.4)$ modelling:
 - SHERPA (NLO) has higher ratio (no explicit fragmentation calculation)
 - JETPHOX (NLO) with different PDF shows good agreement overall
 - NNLOJET (NNLO) describes data very well

- Differential σ unfolded to particle-level, compared to SHERPA 2.2.2, and to JETPHOX and NNLOJET (with corrected parton level)
- Good predictions modelling overall
- σ larger for iso R = 0.2 than 0.4
- SHERPA (NLO) has higher σ (has parton shower, LO for 3-4 jets)
- $\sigma(R=0.2)/\sigma(R=0.4)$ modelling:
 - SHERPA (NLO) has higher ratio (no explicit fragmentation calculation)
 - JETPHOX (NLO) with different PDF shows good agreement overall
 - NNLOJET (NNLO) describes data very well

💵 P. Calfayan (Indiana University)

[pQCD tests][ATLAS] "Event shape" observables in multijet events

- Event shape defined as function of final state particles to characterize hadronic energy flow
- Transverse energy-energy correlation (TEEC): E_T -weighted azimuthal (ϕ) differences (in $\cos \phi$) between jet pairs \rightarrow infrared-safe, NNLO corrections to 3-jets simulation, sensitive to g radiation
- Azimuthal TEEC (ATEEC): difference between forward and backward part of TEEC \rightarrow cancels uncertainties symmetric in $\cos \phi$
- Event isotropy: measures distance I(𝔅) between collider event and isotropic reference radiation pattern in terms of Energy-Mover's distance → infrared & colinear-safe, sensitive to isotropic events, probe specific QCD phase space
- Event shape measured vs $H_{T2} = p_T^{jet1} + p_T^{jet2}$

[pQCD tests][ATLAS] (A)TEEC in multijet events

Submitted to JHEP, hep-ex/2301.09351, $\mathcal{L} = 139 \, \mathrm{fb}^{-1}$ at $13 \, \mathrm{TeV}$

- Particle-level unfolded TEEC depicts back-to-back, wide-angle radiated, and collinear jets in cos φ, compared to LO (PYTHI8 and SHERPA 2.2.1) and NLO (HERWIG7) MC with different showering
- Main uncertainties from jet calibration and MC modelling up to 2% (1%) and 2%(0.5%) for (A)TEEC
- Unfolded (A)TEEC also compared to NNLO parton-level (corrected) prediction using OPENLOOPS2, FIVEPOINTAMPLITUDES, and PENTAGONFUNCTIONS++ (first time)
- → Very good agreement overall, with MC slightly above data at high H_{T2} (may be limited PDF accuracy at high Bjorken x)

[pQCD tests][ATLAS] (A)TEEC in multijet events

Submitted to JHEP, hep-ex/2301.09351, $\mathcal{L} = 139 \, \mathrm{fb}^{-1}$ at $13 \, \mathrm{TeV}$

- Particle-level unfolded TEEC depicts back-to-back, wide-angle radiated, and collinear jets in cos φ, compared to LO (PYTHI8 and SHERPA 2.2.1) and NLO (HERWIG7) MC with different showering
- Main uncertainties from jet calibration and MC modelling up to 2% (1%) and 2%(0.5%) for (A)TEEC
- Unfolded (A)TEEC also compared to NNLO parton-level (corrected) prediction using OPENLOOPS2, FIVEPOINTAMPLITUDES, and PENTAGONFUNCTIONS++ (first time)
- → Very good agreement overall, with MC slightly above data at high H_{T2} (may be limited PDF accuracy at high Bjorken x)

- Unfolded σ vs 3 event shapes I^N_{geom} , with N reference points in specific geometry
- · Main uncertainy either from jet calibration of MC model used in unfolding
- Good description from MC in least isotropic region (where total uncertainty < 5%)
- I^2_{ring} : compares to dijet (low values well modelled by NLO <code>POWHEG</code>), no trend vs H_{T2}
- $1 I_{ring}^{128}$: compares to isotropic MJ (high values), degrades with inscreasing n_{jets}
- $1 I_{cyl}^{16}$: compares to forward dijet and events evenly populated in η - ϕ plane (high values), not well modelled, differences in HERWIG7 showering (angle- vs dipole-ordered)

- Unfolded σ vs 3 event shapes I^N_{geom} , with N reference points in specific geometry
- Main uncertainy either from jet calibration of MC model used in unfolding
- Good description from MC in least isotropic region (where total uncertainty < 5%)
- I^2_{ring} : compares to dijet (low values well modelled by NLO <code>POWHEG</code>), no trend vs H_{T2}
- $1 I_{ring}^{128}$: compares to isotropic MJ (high values), degrades with inscreasing n_{jets}
- $1 I_{cyl}^{16}$: compares to forward dijet and events evenly populated in η - ϕ plane (high values), not well modelled, differences in HERWIG7 showering (angle- vs dipole-ordered)

- Unfolded σ vs 3 event shapes I^N_{geom} , with N reference points in specific geometry
- Main uncertainy either from jet calibration of MC model used in unfolding
- Good description from MC in least isotropic region (where total uncertainty < 5%)
- I_{ring}^2 : compares to dijet (low values well modelled by NLO POWHEG), no trend vs H_{T2}
- $1 I_{ring}^{128}$: compares to isotropic MJ (high values), degrades with inscreasing n_{jets}
- $1 I_{cyl}^{16}$: compares to forward dijet and events evenly populated in η - ϕ plane (high values), not well modelled, differences in HERWIG7 showering (angle- vs dipole-ordered)

- Unfolded σ vs 3 event shapes I_{geom}^N , with N reference points in specific geometry
- · Main uncertainy either from jet calibration of MC model used in unfolding
- Good description from MC in least isotropic region (where total uncertainty < 5%)
- I_{ring}^2 : compares to dijet (low values well modelled by NLO POWHEG), no trend vs H_{T2}
- $1 I_{ring}^{128}$: compares to isotropic MJ (high values), degrades with inscreasing n_{jets}
- $1 I_{cyl}^{16}$: compares to forward dijet and events evenly populated in η - ϕ plane (high values), not well modelled, differences in HERWIG7 showering (angle- vs dipole-ordered)

- Unfolded σ vs 3 event shapes I^N_{geom} , with N reference points in specific geometry
- Main uncertainy either from jet calibration of MC model used in unfolding
- Good description from MC in least isotropic region (where total uncertainty < 5%)
- I_{ring}^2 : compares to dijet (low values well modelled by NLO POWHEG), no trend vs H_{T2}
- $1 I_{ring}^{128}$: compares to isotropic MJ (high values), degrades with inscreasing n_{jets}
- $1 I_{cyl}^{16}$: compares to forward dijet and events evenly populated in η - ϕ plane (high values), not well modelled, differences in HERWIG7 showering (angle- vs dipole-ordered)

- Unfolded σ vs 3 event shapes I^N_{geom} , with N reference points in specific geometry
- Main uncertainy either from jet calibration of MC model used in unfolding
- Good description from MC in least isotropic region (where total uncertainty < 5%)
- I_{ring}^2 : compares to dijet (low values well modelled by NLO POWHEG), no trend vs H_{T2}
- $1 I_{ring}^{128}$: compares to isotropic MJ (high values), degrades with inscreasing n_{jets}
- $1 I_{cyl}^{16}$: compares to forward dijet and events evenly populated in η - ϕ plane (high values), not well modelled, differences in HERWIG7 showering (angle- vs dipole-ordered)

- Unfolded σ vs 3 event shapes I^N_{geom} , with N reference points in specific geometry
- Main uncertainy either from jet calibration of MC model used in unfolding
- Good description from MC in least isotropic region (where total uncertainty < 5%)
- I_{ring}^2 : compares to dijet (low values well modelled by NLO POWHEG), no trend vs H_{T2}
- $1 I_{ring}^{128}$: compares to isotropic MJ (high values), degrades with inscreasing n_{jets}
- $1 I_{cyl}^{16}$: compares to forward dijet and events evenly populated in η - ϕ plane (high values), not well modelled, differences in HERWIG7 showering (angle- vs dipole-ordered)

- Unfolded σ vs 3 event shapes I^N_{geom} , with N reference points in specific geometry
- · Main uncertainy either from jet calibration of MC model used in unfolding
- Good description from MC in least isotropic region (where total uncertainty < 5%)
- I^2_{ring} : compares to dijet (low values well modelled by NLO <code>POWHEG</code>), no trend vs H_{T2}
- $1 I_{ring}^{128}$: compares to isotropic MJ (high values), degrades with inscreasing n_{jets}
- $1 I_{cyl}^{16}$: compares to forward dijet and events evenly populated in η - ϕ plane (high values), not well modelled, differences in HERWIG7 showering (angle- vs dipole-ordered)

[pQCD tests][CMS] Multidimensional σ of dijet production

Preliminary: CMS-PAS-SMP-21-008, $\mathcal{L} = 36.3 \, \mathrm{fb}^{-1}$ at $13 \, \mathrm{TeV}$

- σ unfolded to particle-level vs 2 or 3 dijet system kinematic variables $(m_{1,2}, \langle p_T \rangle_{1,2}, |y_{max}|, y$ separation y^* , and boost y_b)
- Main uncertainties: jet energy scale 2-30% (2D) and 3-60% (3D), stat at high-E (up to 40%)
- Results compared to (corrected) parton-level NNLO NNLOJET+FASTNLO via APPLFAST Lead-color and flavor-number approximation EWK corrections up to 20% at high $m_{1,2}$.
- Jets with distance parameter R = 0.8 have better modelling than with R = 0.4
- Prediction using different PDF sets: good agreement with data except for ABMP16
- Prediction shows good modelling overall except in ends of energy spectra and outer *y* regions

[pQCD tests][CMS] Multidimensional σ of dijet production

Preliminary: CMS-PAS-SMP-21-008, $\mathcal{L} = 36.3 \, \mathrm{fb}^{-1}$ at $13 \, \mathrm{TeV}$

- σ unfolded to particle-level vs 2 or 3 dijet system kinematic variables $(m_{1,2}, \langle p_T \rangle_{1,2}, |y_{max}|, y$ separation y^* , and boost y_b)
- Main uncertainties: jet energy scale 2-30% (2D) and 3-60% (3D), stat at high-E (up to 40%)
- Results compared to (corrected) parton-level NNLO NNLOJET+FASTNLO via APPLFAST Lead-color and flavor-number approximation EWK corrections up to 20% at high $m_{1,2}$.
- Jets with distance parameter $\frac{R = 0.8}{\text{better modelling}}$ have better modelling than with R = 0.4
- Prediction using different PDF sets: good agreement with data except for ABMP16
- Prediction shows good modelling overall except in ends of energy spectra and outer *y* regions

[SM parameters][ATLAS][CMS] α_s measurement in multijet events

- World average: $\alpha_s(m_Z) = 0.1179 \pm 0.0009$
- Extraction via CMS dijet analysis:
 - At Z pole mass, derived from simultaneously fit together with PDF parametrization to account for correlation with g PDF
 - Assuming MMHT2014:

 $\alpha_s(m_Z) = 0.1201 \pm 0.0021 \text{ (2D)}$ = 0.1201 ± 0.0020 (3D)

- Extraction via ATLAS (A)TEEC analysis:
 - In each H_{T2} interval with different PDF sets
 - Uncertainties dominated by theory
 - Assuming MMHT2014:

 $\alpha_s(m_Z) = 0.1175^{+0.0035}_{-0.0018} \text{ (TEEC)}$ $= 0.1185^{+0.0027}_{-0.0015} \text{ (ATEEC)}$

[SM parameters][CMS] Measurement of τ polarization in $Z \rightarrow \tau \tau$ events

Preliminary: CMS-PAS-SMP-18-010, $\mathcal{L} = 36.3 \, \mathrm{fb}^{-1}$ at $13 \, \mathrm{TeV}$

- Using leptonic and hadronic τ decays: $\tau_h \tau_h$, $\tau_e \tau_h$, $\tau_\mu \tau_h$, $\tau_e \tau_\mu$, with $\tau_h \rightarrow h\nu$ $(h = \pi, \rho, a_1)$
- Channels split into 11 categories depending on τ decay mode, each associated to an optimized observable sensitive to τ helicity (e.g., ω, m_{vis})
- ω : angle between polarimetric vector \vec{h} and τ In τ rest frame: $d\Gamma_{\tau} \propto (1 + \vec{h}. \vec{\tau}_{spin})$
- Average τ polarization: $\langle \mathcal{P}_{\tau} \rangle$ $(\frac{m_{\tau\tau}}{\text{GeV}} \in [75, 120])$ extracted from global fit to data of signal and bkg templates for 11 observables, distinguishing 2 helicity states $Z \rightarrow \tau_{L(R)}^{-} \tau_{R(L)}^{+}$
- Main bkg from mis-id τ_h in MJ (up to 84% in $\tau_h \tau_h$), and W+jets (~30% in $\tau_\ell \tau_h$), estimated from fake enriched data regions
- Main (shape) systematics include mis-id τ_h decay (up to 3.7%)

[SM parameters][CMS] Measurement of τ polarization in Z events

- $\langle \mathcal{P}_{\tau} \rangle = -0.140 \pm 0.006 \, (\text{stat}) \pm 0.014 \, (\text{syst})$
 - Best sensitivity from $\mu + \rho$ channel
 - Full hadronic limited by trigger thresholds
- $\langle \mathcal{P}_{\tau} \rangle$ corrected to its value at Z pole via MADGRAPH5_*a*MC@NLO simulation:

 $\Rightarrow \left| \mathcal{P}_{\tau}(Z^0) = -0.144 \pm 0.015 \right|$

 If vector coupling (v) << axial-vector coupling (a) for initial-state fermions:

$$\mathcal{P}_{\tau} = -A_{\tau} \approx -2v_{\tau}/a_{\tau} = -2(1-4\sin^2\theta_W^{eff})$$

with $\sin \theta_W^{eff}$: effective weak mixing angle

 $\Rightarrow \sin^2 \theta_W^{eff} = 0.2319 \pm 0.008 \,(\text{stat}) \pm 0.018 \,(\text{syst})$

Best at LHC. LEP-SLD: 0.2315 ± 0.0002

• Test of lepton universality: agreement with SM predicted value $A_\ell = 0.1468 \pm 0.0003$

s. d/s. ā ____

000000

[PDF constraints][CMS] Measurement of W + c-jet Preliminary: CMS-PAS-SMP-21-005, $\mathcal{L} = 138 \text{ fb}^{-1}$ at 13 TeV

- Sensitive to s PDF as dominated by $gs \rightarrow Wc$
- Motivation: constrain $s-\bar{s}$ PDF asymmetry and $R_s = \frac{s+\bar{s}}{\bar{u}+\bar{d}}$, major bkg (e.g., W(H $\rightarrow c\bar{c}$)), tune MC simulation
- Strategy: identify c via c-jet reconstruction
- Four independant channels:
 - $\circ~e~{\rm or}~\mu$ W decays (isolated high- p_T lepton)
 - semileptonic (SL) c decay (µ inside jet) or reconstructed secondary vertex (SV) in jet
- c and ℓ from W have opposite-signs (OS), bkg $W + c\bar{c}$ and $t\bar{t}$ suppressed by same-sign (SS) subtraction, surviving $t\bar{t}$ constrained from data

Z+jets suppressed (SL channel) with large μ impact parameter, constrained from data

[PDF constraints][CMS] Measurement of W + c-jet

- Total uncertainty of 5% in both channels, dominated by muon-in-jet and SV reconstructions (3% each)
- Unfolded parton-level $\sigma(W + c)$ 10% smaller than at particle-level due to p_T^c smeared below analysis threshold (30 GeV) during hadronization and jet clustering
- $R_c^{\pm} = \frac{\sigma(W^+ + c)}{\sigma(W^- + c)} = 0.950 \pm 0.005 \text{ (stat)} \pm 0.010 \text{ (syst)}$, in agreement with NLO prediction, with total uncertainty reaching $\sim 1\%$
- CT18 and ABMP16 assume $s = \overline{s}$ and lead to smaller uncertaintes in predictions

[PDF constraints][ATLAS] Measurement of W + charmed hadron

Submitted to PRD, hep-ex/2302.00336, $\mathcal{L} = 140 \, \mathrm{fb}^{-1}$ at $13 \, \mathrm{TeV}$

 Strategy: identify c via charmed-hadron reconstruction (using SV mass observable)

$$\begin{array}{l} \circ \quad D^{\pm} \to K^{\mp} \pi^{\pm} \pi^{\pm} \text{ via } \frac{m(D^{\pm})}{m(D^{\pm})} \\ \circ \quad D^{*\pm} \to D^{0} \pi^{\pm} \to (K^{\mp} \pi^{\pm}) \pi^{\pm} \text{ via } \frac{m(D^{*\pm} - D^{0})}{m(D^{*\pm} - D^{0})} \end{array}$$

- Both e and μ W decays
- Main bkg (suppressed exploiting OS-SS subtraction):
- $\circ~W + c^{match}$: tracks in SV belong to different c-hadron or decay mode
- $\circ \ W + c^{mis-match}:$ not all tracks belong to $D^{\pm(*)}$ candidate
- $\circ~$ W+jets: no track belong to $D^{\pm(*)}$ candidate
- $\circ~$ Top constrained in data region with $\geq 1~b\text{-jet}$
- Multijet from fake-enriched events in data

[PDF constraints][ATLAS] Measurement of W + charmed hadron

- Bkg normalization and systematics constraints via likelihood fit of 5 $p_T(D^{\pm(*)})$ or $|\eta(\ell)|$ bins, and control regions
- Differential unfolded σ measurements: smaller systematics in $|\eta(\ell)|$ than $p_T(D^{\pm(*)})$ (SV reconstruction independent of $\eta(\ell)$)
- Ratio of σ in 2 decay channels in agreement with world average: 1.021 ± 0.034
- Systematics in "+" and "-" channels mostly cancel out in R_C^{\pm} . MC and Data statistics dominate with 1.1-1.3% and 0.7-1.0%, resp.
- R_c^{\pm} with higher precision using CT18 and AMBP16 (assumes $s = \bar{s}$): suggests $s - \bar{s}$ asymmetry is small
- Global PDF fit ATLASpdf21 agrees well

[PDF constraints][ATLAS] Measurement of W + charmed hadron

- Bkg normalization and systematics constraints via likelihood fit of 5 $p_T(D^{\pm(*)})$ or $|\eta(\ell)|$ bins, and control regions
- Differential unfolded σ measurements: smaller systematics in |η(ℓ)| than p_T(D^{±(*)} (SV reconstruction independent of η(ℓ))
- Ratio of σ in 2 decay channels in agreement with world average: 1.021 ± 0.034
- Systematics in "+" and "-" channels mostly cancel out in R_C^{\pm} . MC and Data statistics dominate with 1.1-1.3% and 0.7-1.0%, resp.
- R_c^{\pm} with higher precision using CT18 and AMBP16 (assumes $s = \bar{s}$): suggests $s - \bar{s}$ asymmetry is small
- Global PDF fit ATLASpdf21 agrees well

Channel	$\sigma_{\rm fid}^{\rm OS-SS}(W+D^{(*)}) \times B(W \to \ell \nu) \text{ [pb]}$
W^-+D^+	50.2 ± 0.2 (stat.) $^{+2.4}_{-2.3}$ (syst.)
W^++D^-	48.5 ± 0.2 (stat.) $^{+2.3}_{-2.2}$ (syst.)
$W^{-}+D^{*+}$	51.1 ± 0.4 (stat.) $^{+1.9}_{-1.8}$ (syst.)
$W^{+}+D^{*-}$	50.0 ± 0.4 (stat.) $^{+1.9}_{-1.8}$ (syst.)
	$R_c^{\pm} = \sigma_{\rm fid}^{\rm OS-SS}(W^+ + D^{(*)})/\sigma_{\rm fid}^{\rm OS-SS}(W^- + D^{(*)})$
$R_c^{\pm}(D^+)$	0.965 ± 0.007 (stat.) ±0.012 (syst.)
$R_c^{\pm}(D^{*+})$	$0.980 \pm 0.010 \text{ (stat.) } \pm 0.013 \text{ (syst.)}$
$R_c^{\pm}(D^{(*)})$	0.971 ± 0.006 (stat.) ± 0.011 (syst.)

[PDF constraints][CMS] up, down, and g PDF constraints in dijet events

- Uncertainties (smaller with 2D input): errors in measurements (fit unc), non-PDF parameters (model unc), alternative parametrization, scale variation
- Overall PDF precision improved, and especially for g PDF at x > 0.1

Summary

- Fiducial and unfolded differential production cross sections have been determined for multiple processes of the SM, considering observables sensitive to perturbative QCD effects, fundamental SM parameters (α_s, sin² θ^{eff}_W), and PDF
- Accurate measurements were carried out with different luminosities up to the complete statistics of LHC Run 2
- Different final states were analyzed, involving data-driven techniques to constrain background processes when simulation is not sufficient
- * For more information (Standard Model public results):
 - $\rightarrow {\sf ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults}$
 - $\rightarrow \mathsf{CMS:}\ \mathsf{http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP}$
- * ATLAS & CMS electroweak results covered in presentation on "Dibosons and other EWK physics measurements" (L. Horyn)