
BSM effects in B physics: Where do we stand?

Diego Guadagnoli CNRS, LAPTh Annecy

This talk assignment before Dec. 20, 2022

This talk assignment after Dec. 20, 2022

Before any anomaly

 FCNCs enjoy a unique concurrence of suppression mechanisms in the SM

Loop & CKM & sometimes GIM & sometimes chiral

 FCNCs enjoy a unique concurrence of suppression mechanisms in the SM

Loop & CKM & sometimes GIM & sometimes chiral

 Due to high EXP & TH accuracies attainable in numerous cases and to the large number of observables one can construct

FCNCs rank among the very best probes of beyond-SM effects e.g. because of the high scales accessible

 FCNCs enjoy a unique concurrence of suppression mechanisms in the SM

Loop & CKM & sometimes GIM & sometimes chiral

 Due to high EXP & TH accuracies attainable in numerous cases and to the large number of observables one can construct

FCNCs rank among the very best probes of beyond-SM effects e.g. because of the high scales accessible

• b \rightarrow s transitions are the FCNCs closest to 3rd gen. physics

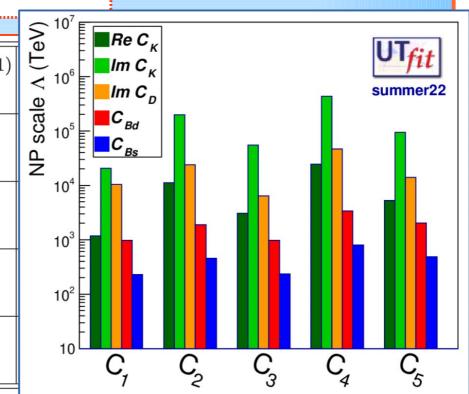
$$\Delta \mathcal{L}^{\Delta F=2} = \sum_{i \neq j} \frac{c_{ij}}{\Lambda^2} (\overline{Q}_{Li} \gamma^{\mu} Q_{Lj})^2 + \dots$$

$$\Delta \mathcal{L}^{\Delta F=2} = \sum_{i \neq j} \frac{c_{ij}}{\Lambda^2} (\overline{Q}_{Li} \gamma^{\mu} Q_{Lj})^2 + \dots$$

[Isidori-Nir-Perez, 1002.0900]

——————————————————————————————————————	Bounds on A	Λ in TeV $(c_{ij}=1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \ {\rm TeV})$	Observables
	Re	Im	Re	Im	
$- (ar s_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K;\epsilon_K$
$(ar{s}_Rd_L)(ar{s}_Ld_R)$	1.8×10^{4}	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K;\epsilon_K$
$\overline{(ar{c}_L \gamma^\mu u_L)^2}$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_Rd_L)(ar{b}_Ld_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1.1×10^2		7.6×10^{-5}		Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7×10^2		1.3×10^{-5}		Δm_{B_s}

$$\Delta \mathcal{L}^{\Delta F=2} = \sum_{i \neq j} \frac{c_{ij}}{\Lambda^2} (\overline{Q}_{Li} \gamma^{\mu} Q_{Lj})^2 + \dots$$


[Isidori-Nir-Perez, 1002.0900]

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda=1~{\rm TeV}$)		Observables
	Re	Im	Re	Im	
$(ar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K;\epsilon_K$
$(ar{s}_Rd_L)(ar{s}_Ld_R)$	1.8×10^{4}	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K;\epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_Rd_L)(ar{b}_Ld_R)$	1.9×10^{3}	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1.1×10^2		7.6×10^{-5}		Δm_{B_s}
$(ar{b}_R s_L)(ar{b}_L s_R)$	3.7×10^2		1.3×10^{-5}		Δm_{B_s}

- Typical scales probed are ≥ 1000 TeV
- TeV-scale effects typically requiring global-symmetry assumptions such as MFV

$$\Delta \mathcal{L}^{\Delta F=2} = \sum_{i \neq j} \frac{c_{ij}}{\Lambda^2} (\overline{Q}_{Li} \gamma^{\mu} Q_{Lj})^2 + \dots$$

Operator	Bounds on Λ in TeV $(c_{ij}=1)$		
	Re	Im	
$(ar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^4	
$(ar{s}_Rd_L)(ar{s}_Ld_R)$	1.8×10^{4}	3.2×10^{5}	
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	
$(ar{b}_Rd_L)(ar{b}_Ld_R)$	1.9×10^{3}	3.6×10^3	
$(ar{b}_L \gamma^\mu s_L)^2$	1.1×10^{2}		
$\stackrel{(\bar{b}_R s_L)(\bar{b}_L s_R)}{=}$	3.7×10^{2}		

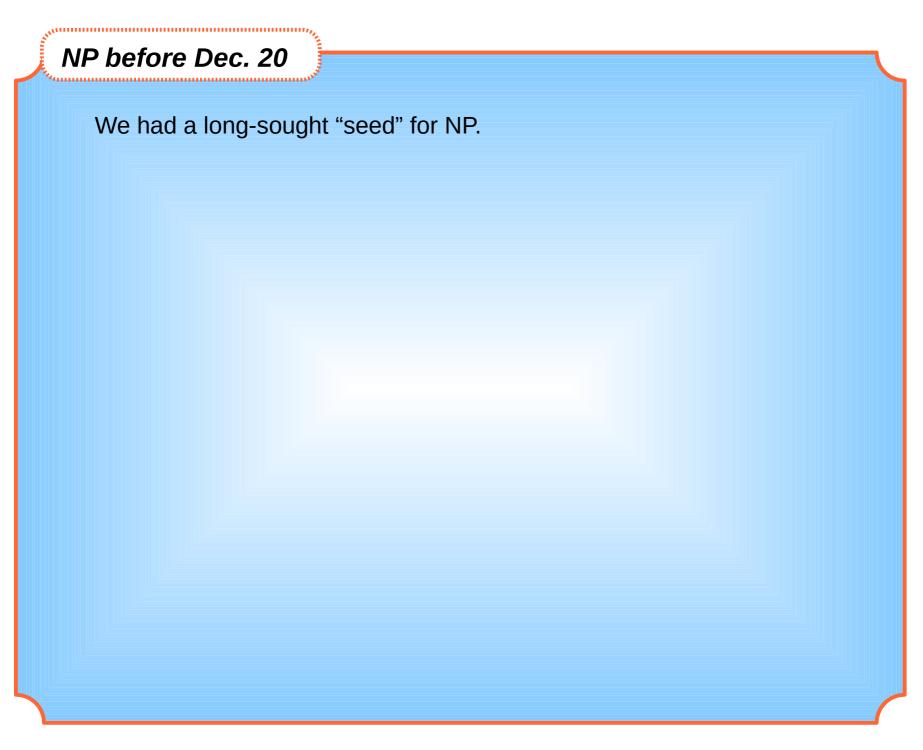
- Typical scales probed are ≥ 1000 TeV
- TeV-scale effects typically requiring global-symmetry assumptions such as MFV

It is sometimes stated that:

The flavour problem is not a problem, it's a puzzle.
 Even solving it, we'll learn nothing about the hierarchy problem, DM, ...

It is sometimes stated that:

- The flavour problem is not a problem, it's a puzzle.
 Even solving it, we'll learn nothing about the hierarchy problem, DM, ...
- But if flavour is a puzzle, then all global / discrete symmetries broken by the SM flavour dynamics are just accidental.
 - i.e. they could be broken very differently by any extension of the SMat whatever scale this may play out


It is sometimes stated that:

- The flavour problem is not a problem, it's a puzzle.
 Even solving it, we'll learn nothing about the hierarchy problem, DM, ...
- But if flavour is a puzzle, then all global / discrete symmetries broken by the SM flavour dynamics are just accidental.
 - i.e. they could be broken very differently by any extension of the SMat whatever scale this may play out
- And if flavour is after all not just a puzzle, then flavour observables are all the more important [Davighi-Isidori, 2303.two-days-ago]

It is sometimes stated that:

- The flavour problem is not a problem, it's a puzzle.
 Even solving it, we'll learn nothing about the hierarchy problem, DM, ...
- But if flavour is a puzzle, then all global / discrete symmetries broken by the SM flavour dynamics are just accidental.
 - i.e. they could be broken very differently by any extension of the SMat whatever scale this may play out
- And if flavour is after all not just a puzzle, then flavour observables are all the more important [Davighi-Isidori, 2303.two-days-ago]
- In either case, if focus is on the highest scales attainable, flavour observables remain among the deepest probes

Anomalies (?)

NP before Dec. 20

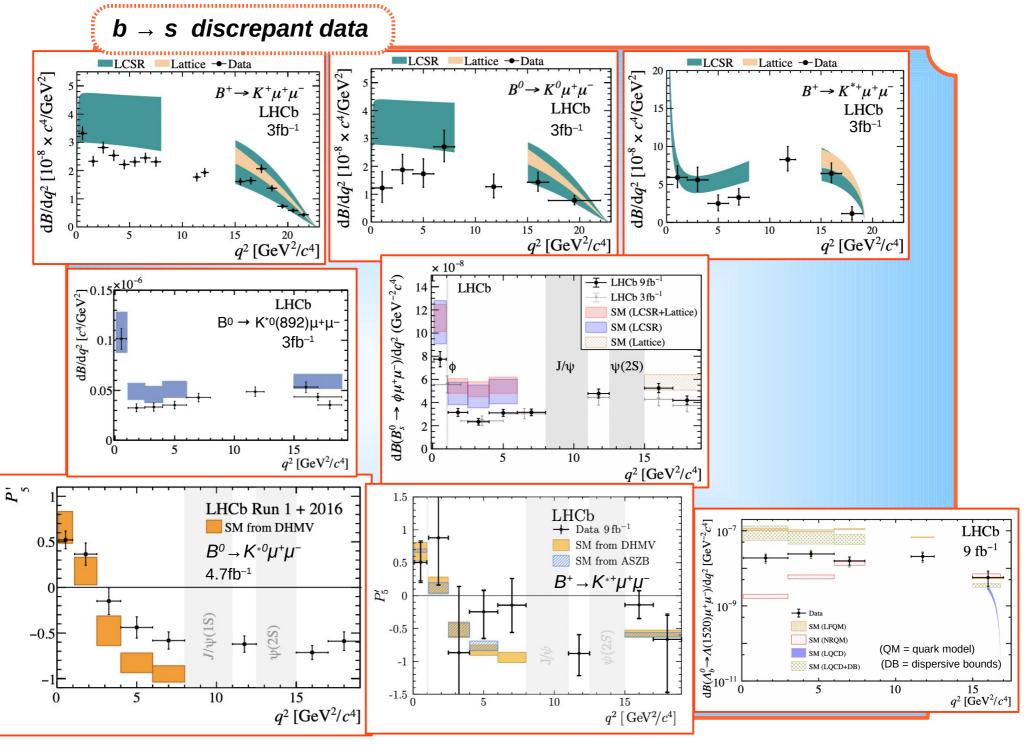
We had a long-sought "seed" for NP.

- TH-clean observables
 - whose prediction was solid enough to be widely accepted: unity $\pm 1\%$
 - whose measurement was discrepant in several updates

NP before Dec. 20

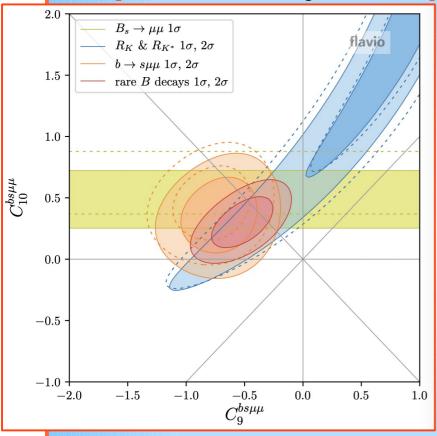
We had a long-sought "seed" for NP.

- TH-clean observables
 - whose prediction was solid enough to be widely accepted: unity $\pm 1\%$
 - whose measurement was discrepant in several updates
- The NP hinted at by this "seed" was somewhat unexpected, a gross violation of:
 - an exact symmetry of the SM gauge sector
 - a near-symmetry (at least observationally) of the SM Yukawa sector

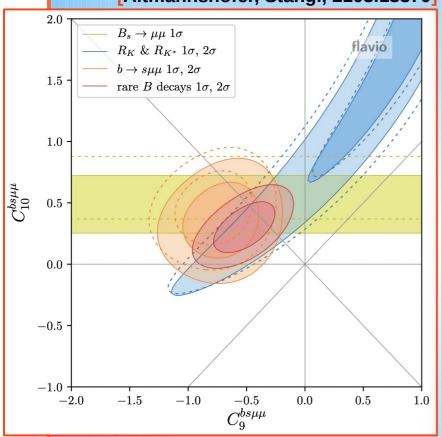

NP before Dec. 20

We had a long-sought "seed" for NP.

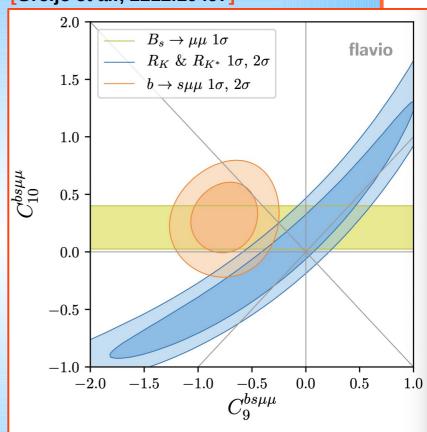
- TH-clean observables
 - whose prediction was solid enough to be widely accepted: unity $\pm 1\%$
 - whose measurement was discrepant in several updates
- The NP hinted at by this "seed" was somewhat unexpected, a gross violation of:
 - an exact symmetry of the SM gauge sector
 - a near-symmetry (at least observationally) of the SM Yukawa sector
- But it was supported by a number of (less TH-clean) measurements
 - that in isolation displayed only mild disagreements
 - but in aggregate suggested a coherent picture


NP after Dec. 20

- The more (TH-)solid NP hints have disappeared overnight.
- The remaining discrepancies (in b → s BRs and angular obs. & in RD^(*))
 are debatable



D. Guadagnoli, La Thuile, 5-11 March, 2023


[Altmannshofer, Stangl, 2103.13370]

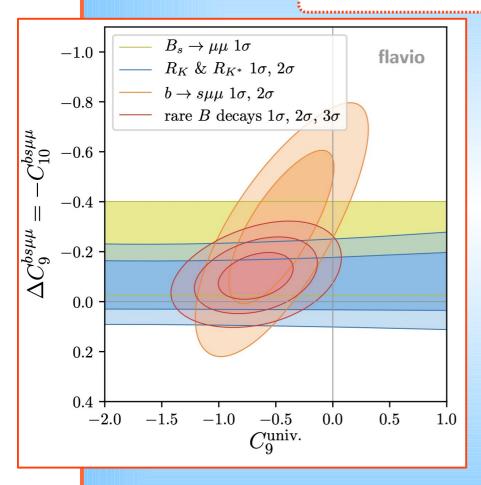
[Altmannshofer, Stangl, 2103.13370]

[Greljo *et al.*, 2212.10497]

Tension between LFU ratios (blue) and $b \rightarrow s \mu^+\mu^-$ data (orange)

[Greljo et al., 2212.10497]

Tension solvable with LFU NP, in either the C_9 or the C_9 = $-C_{10}$ direction


$$C_9^{bsee} = C_9^{\mathrm{univ.}}$$

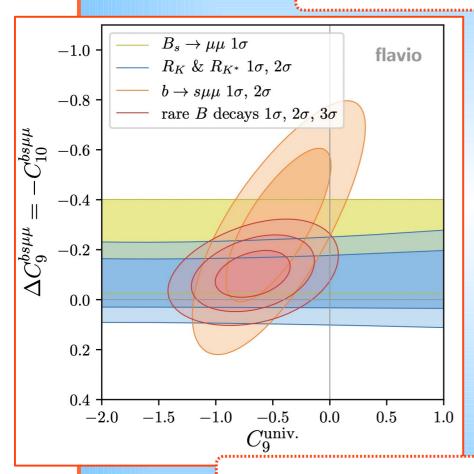
$$C_9^{bs\mu\mu} = C_9^{\mathrm{univ.}} + \Delta C_9^{bs\mu\mu}$$

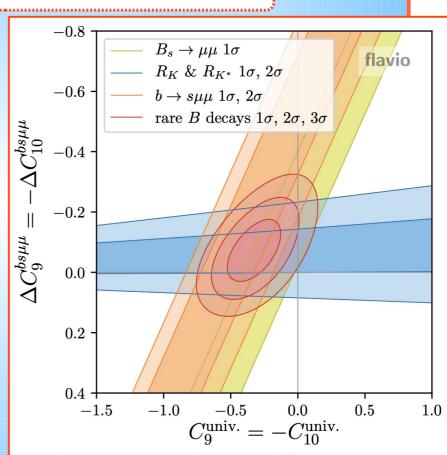
[Greljo et al., 2212.10497]

Tension solvable with LFU NP, in either the C_9 or the $C_9 = -C_{10}$ direction

$$C_9^{bsee} = C_9^{\text{univ.}}$$

$$C_9^{bs\mu\mu} = C_9^{\mathrm{univ.}} + \Delta C_9^{bs\mu\mu}$$




[Greljo et al., 2212.10497]

Tension solvable with LFU NP, in either the C_9 or the $C_9 = -C_{10}$ direction

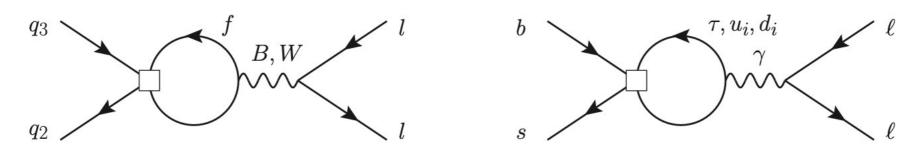
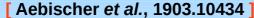
$$C_9^{bsee} = C_9^{\text{univ.}}$$

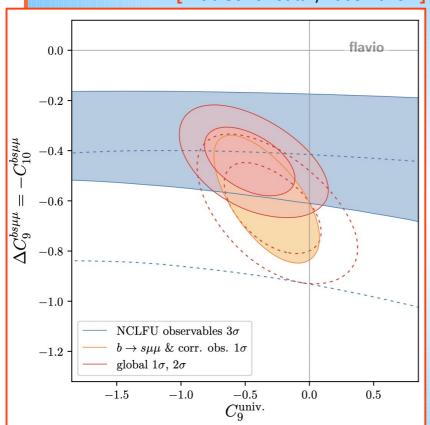
$$C_9^{bs\mu\mu} = C_9^{\mathrm{univ.}} + \Delta C_9^{bs\mu\mu}$$

- Purely muonic shift consistent with 0
- Univ. contrib. O(13%) for C_9 -only, or half as much for C_L

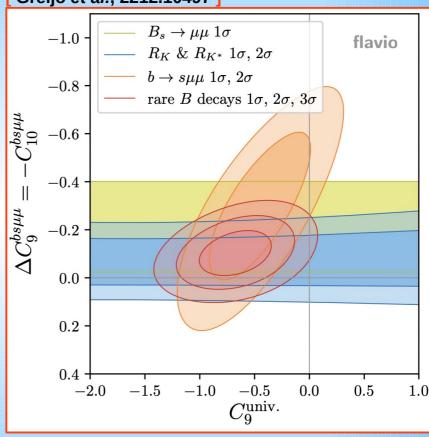
Connection with $b \rightarrow c$?

C₉^{univ.} of the correct size can be generated through RGE effects
 [Bobeth-Haisch, 2011][Crivellin et al., 2018][Aebischer et al., 2019]

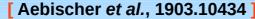



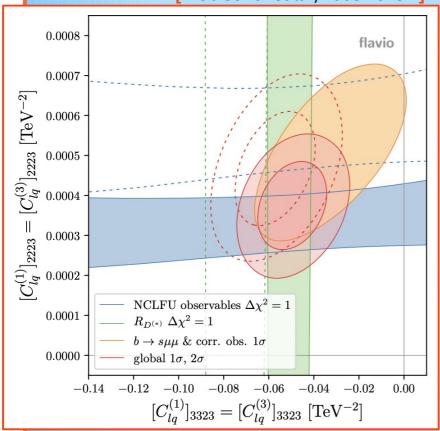

Figure 3: Diagrams inducing a contribution to C_9 through RG running above (left panel) and below (right panel) the EW scale. A sizeable contribution to C_9 is obtained when $f = u_{1,2}, d_{1,2,3}$ or l_3 , see text for details.

Connection with $b \rightarrow c$ after Dec. 20? . Exercise not yet done quantitatively AFAIK. But it will probably work:

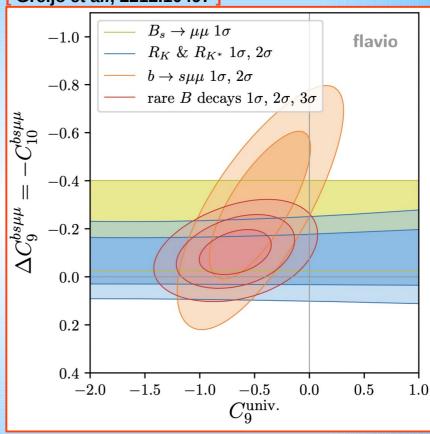

Connection with $b \rightarrow c$ after Dec. 20?

Exercise not yet done quantitatively AFAIK. But it will probably work:






• $C_9^{univ.}$ has slightly increased in central value from pre- to post-Dec. 20


Connection with $b \rightarrow c$ after Dec. 20?

Exercise not yet done quantitatively AFAIK. But it will probably work:

• But RD^(*) prefers the part of the yellow ellipse closer to zero (in the y-axis direction)

Connection with $b \rightarrow c$?

4......

Beware: properly using LQCD + unitarity, $R(D^{(*)})$ significance ~ 1.4 σ [Martinelli, Simula, Vittorio, 2021]

Post-Dec. 20 exercise:

[Greljo et al., 2212.10497]

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Post-Dec. 20 exercise:

[Greljo et al., 2212.10497]

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Gauged U(1)'s

B – L direction + quark-flavour violation through VL heavy quarks

[Greljo et al., 2212.10497]

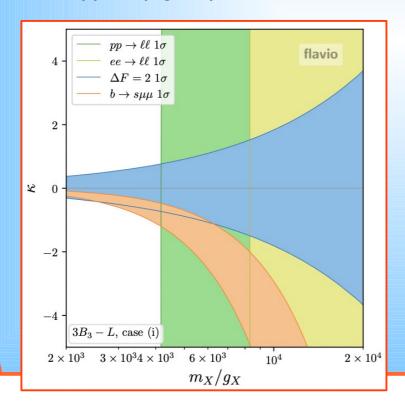
Post-Dec. 20 exercise:

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Gauged U(1)'s

B – L direction + quark-flavour violation through VL heavy quarks

challenged by $\Delta F = 2$ & pp, ee $\rightarrow \ell\ell$


[Greljo et al., 2212.10497]

Post-Dec. 20 exercise:

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Gauged U(1)'s

- B L direction + quark-flavour violation through VL heavy quarks
 - challenged by $\Delta F = 2$ & pp, ee $\rightarrow \ell\ell$
- 3rd-(quark)-gen-philic variant: 3 B₃ L

 $pp \rightarrow \ell\ell$ gets less stringent, but tension w/ $ee \rightarrow \ell\ell$ persists

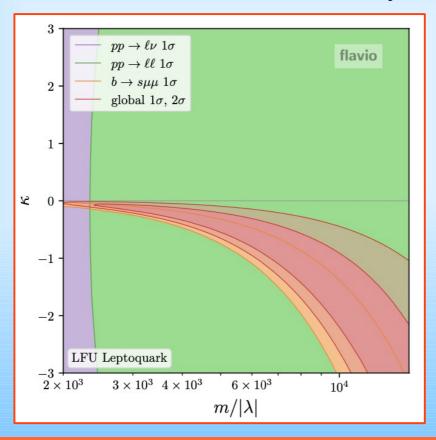
Post-Dec. 20 exercise:

[Greljo et al., 2212.10497]

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Scalar LQs

• Three "leptonic flavours" of $S \sim (\overline{3}, 3, 1/3)$


[Greljo et al., 2212.10497]

Post-Dec. 20 exercise:

generate O(10%), lepton universal effects in $b \rightarrow s \ell^+ \ell^-$

Scalar LQs

• Three "leptonic flavours" of S ~ ($\overline{\bf 3}$, ${\bf 3}$, 1/3) Semilep at tree level, but $\Delta F = 2$ & ee $\rightarrow \ell\ell$ only at loop level

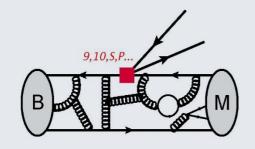
Conclusive remarks

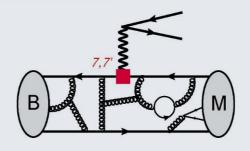
NP after Dec. 20

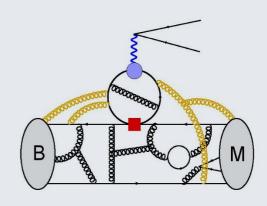
Main points

1 The TH-cleaner bits (LUV observables; $B_s \rightarrow \mu^+\mu^-$) are gone

NP after Dec. 20


Main points

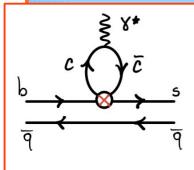

- 1 The TH-cleaner bits (LUV observables; $B_s \rightarrow \mu^+\mu^-$) are gone
- Remaining hints suggest:
 - C_9^{NP} (or C_L^{NP}) at low q^2 , but not at high q^2 ?
 - C_9^{NP} (or C_L^{NP}) in di-muons, and also in di-electrons?


While waiting for updates of discrepant measurements, progress relies on a solid understanding of "non-local FFs" in b \rightarrow s $\ell^+\ell^-$ (because of \bigcirc 1)

Form factors in $b \rightarrow s\ell\ell$

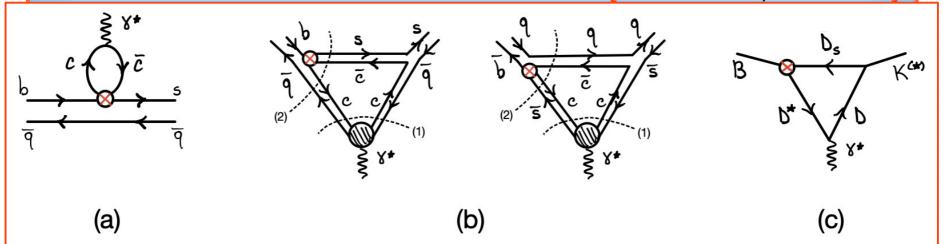
$$\mathcal{H}(b \to s\ell\ell) = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$

$$\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

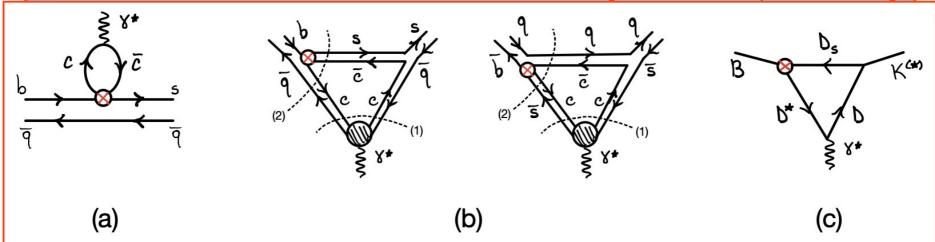

$$\mathcal{H}_{\mu}(k,q) = i \int d^4x \, e^{iq \cdot x} \langle \bar{M}(k) | T\{\mathcal{J}_{\mu}^{\text{em}}(x), \mathcal{C}_i \mathcal{O}_i\} | \bar{B}(q+k) \rangle$$

Non-local form-factors

ightarrow Main contributions: the "charm-loops" $\mathcal{O}_{2(1)}^c = \left(\bar{s}_L \gamma_\mu(T^a) c_L\right) \left(\bar{c}_L \gamma^\mu(T^a) b_L\right)$


Méril Reboud - 20/10/2022

64....



4....

[Ciuchini *et al.*, 2212.10516]

Ciuchini et al., 2212.10516


What about contribs. (b)?

In principle, well-known to be there, e.g.

▶ On-shell cuts in the variable $(q+k)^2$ (the "forward" or "decay" channel) include branch cuts from intermediate states such as $B \to \bar{D}D_s \to K^*\ell^+\ell^-$. The physical point $(q+k)^2 = M_B^2$ lies on these cuts, which implies that the functions $\mathcal{H}_{\lambda}(q^2)$ are complex-valued for all values of q^2 . But this imaginary part is not associated with any singularity in the variable q^2 . Thus, one can write $\mathcal{H}_{\lambda}(q^2) = \mathcal{H}_{\lambda}^{(\text{re})}(q^2) + i \mathcal{H}_{\lambda}^{(\text{im})}(q^2)$, with $\mathcal{H}_{\lambda}^{(\text{re},\text{im})}(q^2)$ satisfying the analytic properties of the previous point as functions of q^2 , and obeying the same dispersion relation.

[Bobeth *et al.*, 2017]

Ciuchini et al., 2212.10516

What about contribs. (b)?

In principle, well-known to be there, e.g.

▶ On-shell cuts in the variable $(q+k)^2$ (the "forward" or "decay" channel) include branch cuts from intermediate states such as $B \to \bar{D}D_s \to K^*\ell^+\ell^-$. The physical point $(q+k)^2 = M_B^2$ lies on these cuts, which implies that the functions $\mathcal{H}_{\lambda}(q^2)$ are complex-valued for all values of q^2 . But this imaginary part is not associated with any singularity in the variable q^2 . Thus, one can write $\mathcal{H}_{\lambda}(q^2) = \mathcal{H}_{\lambda}^{(\text{re})}(q^2) + i \mathcal{H}_{\lambda}^{(\text{im})}(q^2)$, with $\mathcal{H}_{\lambda}^{(\text{re},\text{im})}(q^2)$ satisfying the analytic properties of the previous point as functions of q^2 , and obeying the same dispersion relation.

[Bobeth *et al.*, 2017]

In practice, however...

to this kind of contributions, but the analytic structure of triangle diagrams is quite involved, depending on the values of external momenta and internal masses. A dispersion relation in q^2 of the kind used in refs. [43, 45–48], based on the cut denoted by (1) in Fig. 1 (b), could be written if the B invariant mass were below the threshold for the production of charmed intermediate states. However, when the B invariant mass raises above the threshold for cut (2), an additional singularity moves into the q^2 integration domain, requiring a nontrivial deformation of the path (see for example the detailed discussion in ref. [94]). Another possibility would be to get an

Ciuchini *et al.*, 2212.10516