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Introduction



Flavour changing currents

flavour changing charged currents (FCCC) occur at tree 

level (mediated by 𝑊±) in the SM

flavour changing neutral currents (FCNC) absent at tree 

level in the SM

FCNC are loop, GIM and CKM suppressed in the SM

FCNC sensitive to new physics contributions

probe the SM through indirect searches

FCCC

FCNC
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Flavour changing currents

flavour changing charged currents (FCCC) occur at tree 

level (mediated by 𝑊±) in the SM

flavour changing neutral currents (FCNC) absent at tree 

level in the SM

FCNC are loop, GIM and CKM suppressed in the SM

FCNC sensitive to new physics contributions

probe the SM through indirect searches

integrate out DOF heavier than the 𝑏
⇓

weak effective field theory

FCCC

FCNC

EFT

EFT
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Hadronic matrix elements

study 𝒃 → 𝒔ℓ+ℓ− transitions using 𝑩-meson, focus on to 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ−

factorise decay amplitude as (neglecting QED corrections)

FCCC: ഥ𝐷 ∗ ℓ𝜈ℓ 𝒪𝑒𝑓𝑓 𝐵 = ℓ𝜈ℓ 𝒪𝑙𝑒𝑝 0 𝐷 ∗ 𝒪ℎ𝑎𝑑 𝐵

FCNC: 𝐾 ∗ ℓ+ℓ− 𝒪𝑒𝑓𝑓 𝐵 = ℓℓ 𝒪𝑙𝑒𝑝 0 𝐾 ∗ 𝒪ℎ𝑎𝑑 𝐵 + non−fact.

leptonic matrix elements: perturbative objects, high accuracy

hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties
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study 𝒃 → 𝒔ℓ+ℓ− transitions using 𝑩-meson, focus on to 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ−

factorise decay amplitude as (neglecting QED corrections)

FCCC: ഥ𝐷 ∗ ℓ𝜈ℓ 𝒪𝑒𝑓𝑓 𝐵 = ℓ𝜈ℓ 𝒪𝑙𝑒𝑝 0 𝐷 ∗ 𝒪ℎ𝑎𝑑 𝐵

FCNC: 𝐾 ∗ ℓ+ℓ− 𝒪𝑒𝑓𝑓 𝐵 = ℓℓ 𝒪𝑙𝑒𝑝 0 𝐾 ∗ 𝒪ℎ𝑎𝑑 𝐵 + non−fact.

leptonic matrix elements: perturbative objects, high accuracy

hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties

decay amplitudes depend on:

• local hadronic matrix elements 

(local form factors)

𝐾 ∗ 𝒪 0 𝐵

𝐷 ∗ 𝒪 0 𝐵

• nonlocal hadronic matrix elements

(soft gluon contributions 

to the charm-loop)

𝐾 ∗ 𝒪 0, 𝑥 𝐵
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SM predictions for BRs in rare decays

test the SM and constrain new physics by comparing theory predictions and exp. measurements

of, e.g., branching ratios 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ−
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3

agreement between theory and experiment  for LFU ratios 𝑅𝐾 and 𝑅𝐾∗, 
but tension remains for 𝑏 → 𝑠𝜇+𝜇− observables ⟹ need to understand this tension 

focus of this talk: how to obtain these SM predictions and what ingredients are needed



Theoretical framework



𝑏 → 𝑠ℓ+ℓ− effective Hamiltonian

transitions described by the effective Hamiltonian

ℋ 𝑏 → 𝑠ℓ+ℓ− = −
4𝐺𝐹

2
𝑉𝑡𝑏𝑉𝑡𝑠

∗ 

𝑖=1

10

𝐶𝑖 𝜇 𝑂𝑖 𝜇 𝜇 = 𝑚𝑏

main contributions to 𝐵 𝑠 → {𝐾(∗), 𝜙}ℓ+ℓ− in the SM given by local operators 𝑂7, 𝑂9, 𝑂10

𝑂7 =
𝑒

16𝜋2
𝑚𝑏 ҧ𝑠𝐿𝜎

𝜇𝜈𝑏𝑅 𝐹𝜇𝜈 𝑂9 =
𝑒2

16𝜋2
ҧ𝑠𝐿𝛾

𝜇𝑏𝐿 σℓ(തℓ𝛾𝜇ℓ) 𝑂10 =
𝑒2

16𝜋2
ҧ𝑠𝐿𝛾

𝜇𝑏𝐿 σℓ(തℓ𝛾𝜇𝛾5ℓ)

𝑂7 𝑂9, 𝑂10
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Charm loop in 𝐵 → 𝐾(∗)ℓ+ℓ−

additional non-local contributions come from 𝑂1
𝑐 and 𝑂2

𝑐 combined with the e.m. current

(charm-loop contribution)

𝑂1
𝑐 = ҧ𝑠𝐿𝛾

𝜇𝑐𝐿 ҧ𝑐𝐿𝛾𝜇𝑏𝐿 𝑂2
𝑐 = ҧ𝑠𝐿

𝑗
𝛾𝜇𝑐𝐿

𝑖 ҧ𝑐𝐿
𝑖𝛾𝜇𝑏𝐿

𝑗

Ԧ𝑞

𝑂1
𝑐 , 𝑂2

𝑐

e.m.
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Decay amplitude for 𝐵 → 𝐾(∗)ℓ+ℓ− decays

calculate decay amplitudes precisely to probe the SM 

𝐵-anomalies: NP or underestimated systematic uncertainties?

(analogous formulas apply to 𝐵𝑠 → 𝜙ℓ+ℓ− decays)

𝒜 𝐵 → 𝐾(∗)ℓ+ℓ− = 𝒩 𝐶9𝐿𝑉
𝜇
+ 𝐶10𝐿𝐴

𝜇
ℱ𝜇−

𝐿𝑉
𝜇

𝑞2
𝐶7 ℱ𝑇,𝜇+ℋ𝜇

local hadronic matrix elements

ℱ𝜇= 𝐾 ∗ 𝑘 𝑂7,9,10
had 𝐵 𝑘 + 𝑞

non-local hadronic matrix elements

ℋ𝜇= 𝑖න𝑑4𝑥 𝑒𝑖𝑞⋅𝑥 𝐾 ∗ 𝑘 𝑇 𝑗𝜇
em(𝑥), (𝐶1𝑂1

𝑐 + 𝐶2𝑂2
𝑐)(0) 𝐵 𝑘 + 𝑞
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Form factors definitions

form factors (FFs) parametrize hadronic matrix elements

FFs are functions of the momentum transfer squared 𝑞2

local FFs

ℱ𝜇(𝑘, 𝑞) =

𝜆

𝒮𝜇
𝜆(𝑘, 𝑞) ℱ𝜆(𝑞

2)

computed with lattice QCD and sum rules with good precision ~10%

non-local FFs

ℋ𝜇(𝑘, 𝑞) =

𝜆

𝒮𝜇
𝜆 𝑘, 𝑞 ℋ𝜆(𝑞

2)

calculated using an Operator Product Expansion (OPE) or QCD factorization or … 

(variety of approaches, most of them model-dependent)

large uncertainties → reduce uncertainties for a better understanding of rare 𝐵 decays
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FF and SM predictions



Parametrization for ℱ𝜆

obtain local FFs ℱ𝜆 in the whole semileptonic region by combining

• lattice QCD (LQCD) calculations at high 𝑞2

• light-cone sum rule (LCSR) calculation at low 𝑞2
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Parametrization for ℱ𝜆

obtain local FFs ℱ𝜆 in the whole semileptonic region by combining

• lattice QCD (LQCD) calculations at high 𝑞2

• light-cone sum rule (LCSR) calculation at low 𝑞2

ℱ𝜆 analytic functions of 𝑞2 (branch cut for 𝑞2 > 𝑡+ = 𝑀𝐵 +𝑀𝐾 ∗
2

)

define the map

𝑧 𝑞2 =
𝑡+ − 𝑞2 − 𝑡+

𝑡+ − 𝑞2 + 𝑡+

fit results to a 𝒛 parametrization and use dispersive bound

(standard approach)

ℱ𝜆∝ 

𝑘=0

∞

𝛼𝑘
ℱ 𝑧𝑘 

𝑘=0

∞

𝛼𝑘
ℱ 2

< 1

[Boyd/Grinstein/Lebed 1997]

8
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Local form factors predictions

available theory inputs for local FFs ℱ𝜆

𝐵 → 𝐾 ℓ+ℓ− :

• LQCD calculations at high 𝑞2 and whole semilept. region
[HPQCD 2013/2023] [FNAL/MILC 2015] 

• LCSR at low 𝑞2 [Khodjamirian/Rusov 2017] 

𝐵 → 𝐾∗ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ− :

• LQCD calculations at high 𝑞2

[Horgan et al. 2015]

• LCSR calculation at low 𝑞2

[Bharucha et al. 2015] [NG/Kokulu/van Dyk 2018]
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Local form factors predictions

available theory inputs for local FFs ℱ𝜆

𝐵 → 𝐾 ℓ+ℓ− :

• LQCD calculations at high 𝑞2 and whole semilept. region
[HPQCD 2013/2023] [FNAL/MILC 2015] 

• LCSR at low 𝑞2 [Khodjamirian/Rusov 2017] 

𝐵 → 𝐾∗ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ− :

• LQCD calculations at high 𝑞2

[Horgan et al. 2015]

• LCSR calculation at low 𝑞2

[Bharucha et al. 2015] [NG/Kokulu/van Dyk 2018]

fit theory inputs to improved BGL expansion

(more stringent constraint, remove 𝐵𝑠𝜋 branch cut)

more LQCD results needed for vector states

9
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Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

10



Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

10

+ hard gluons (𝛼𝑠) corrections

leading power (LO in 𝛼𝑠)



Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯
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+ hard gluons (𝛼𝑠) corrections

soft gluon correction

non-perturbative

⟹ not 𝛼𝑠 suppressed

leading power (LO in 𝛼𝑠)

[Khodjamirian et al. 2010]

[NG/van Dyk/Virto 2020]



Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

2. extract ℋ𝜆 at 𝑞2 = 𝑚𝐽/𝜓
2 from 𝐵 → 𝐾 ∗ 𝐽/𝜓 and 𝐵𝑠 → 𝜙 𝐽/𝜓 measurements 

(no local contribution)
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2

10



Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2
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2 from 𝐵 → 𝐾 ∗ 𝐽/𝜓 and 𝐵𝑠 → 𝜙 𝐽/𝜓 measurements 

(no local contribution)

3. new approach: interpolate these two results to obtain theoretical predictions 

in the low 𝑞2 (0 < 𝑞2 < 8 GeV2) region ⟹ compare with experimental data 

need a parametrization to interpolate ℋ𝜆: which is the optimal parametrization?

light-cone OPE                                  𝑞2 = 0 interpolate (exp. data)        𝑞2 = 𝑚𝐽/𝜓
2
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Parametrizations for ℋ𝜆

• 𝑞2 parametrization

ℋ𝜆 𝑞2 = ℋ𝜆
QCDF

𝑞2 +ℋ𝜆
rest 0 +

𝑞2

𝑀𝐵
2ℋ𝜆

rest,′(0) +
𝑞2 2

𝑀𝐵
4 ℋ𝜆

rest,′′ 0 +⋯

• dispersion relation

ℋ𝜆 𝑞2 = ℋ𝜆 0 + 

𝜓=𝐽/𝜓,𝜓(2𝑆)

𝑓𝜓𝒜𝜓

𝑀𝜓
2 𝑀𝜓

2 − 𝑞2
+න

4𝑀𝐷
2

∞

𝑑𝑡
𝜌 𝑡

𝑡 𝑡 − 𝑞2

• 𝑧 expansion

ℋ𝜆 𝑧 ∝ 

𝑛=0

∞

𝑐𝑛𝑧
𝑛

• we propose a new parametrization ( Ƹ𝑧 polynomials)

ℋ𝜆 Ƹ𝑧 ∝ 

𝑛=0

∞

𝛽𝑛𝑝𝑛( Ƹ𝑧)

[Jäger/Camalich 2012, Ciuchini et al. 2015]

[Khodjamirian et al. 2010]

[Bobeth/Chrzaszcz/van Dyk/Virto 2017]

[NG/van Dyk/Virto 2020]
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Dispersive bound for ℋ𝜆

ℋ𝜆 analytic functions of 𝑞2 (branch cut for 𝑞2 > 𝑡+ ≠ Ƹ𝑡+ ≡ 4𝑀𝐷
2)

define the map:

Ƹ𝑧 𝑞2 =
Ƹ𝑡+ − 𝑞2 − Ƹ𝑡+

Ƹ𝑡+ − 𝑞2 + Ƹ𝑡+

expand ℋ𝜆 in orthogonal polynomials 𝑝𝑛( Ƹ𝑧)

ℋ𝜆 Ƹ𝑧 =
1

𝜙 𝑧 ℬ(𝑧)


𝑛=0

∞

𝛽𝑛𝑝𝑛( Ƹ𝑧)

12
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Dispersive bound for ℋ𝜆

ℋ𝜆 analytic functions of 𝑞2 (branch cut for 𝑞2 > 𝑡+ ≠ Ƹ𝑡+ ≡ 4𝑀𝐷
2)

define the map:

Ƹ𝑧 𝑞2 =
Ƹ𝑡+ − 𝑞2 − Ƹ𝑡+

Ƹ𝑡+ − 𝑞2 + Ƹ𝑡+

expand ℋ𝜆 in orthogonal polynomials 𝑝𝑛( Ƹ𝑧)

ℋ𝜆 Ƹ𝑧 =
1

𝜙 𝑧 ℬ(𝑧)


𝑛=0

∞

𝛽𝑛𝑝𝑛( Ƹ𝑧)

obtain dispersive bound using unitarity and duality

1 > 

𝑛=0

∞

𝛽𝑛
𝐵→𝐾 2 +

𝜆

2

𝑛=0

∞

𝛽𝜆,𝑛
𝐵→𝐾∗ 2

+

𝑛=0

∞

𝛽𝜆,𝑛
𝐵𝑠→𝜙

2

new model independent constraints

12
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Non-local form factors predictions

theory inputs used to constrain non-local FFs ℋ𝜆

• light-cone OPE calculation at negative 𝑞2

• 𝐵 → 𝐾 ∗ 𝐽/𝜓 and 𝐵𝑠 → 𝜙 𝐽/𝜓 measurements at 𝑞2 = 𝑚𝐽/𝜓
2

• dispersive bound 

fit theory inputs to parametrization

ℋ𝜆 Ƹ𝑧 ∝ 

𝑛=0

6

𝛽𝑛𝑝𝑛 Ƹ𝑧

new approach to determine to obtain non-local FFs

systematically improvable approach

(more precise form factor results, saturate the bound,…)

one fit per decay channel (all 𝑝 values > 11%)

13

[NG/van Dyk/Virto 2020]

[NG/Reboud/van Dyk/Virto 2022]



using our local and non-local FFs values

we predict branching ratios and angular observables in 
𝐵 → 𝐾𝜇+𝜇−, 𝐵 → 𝐾∗𝜇+𝜇−, and 𝐵𝑠 → 𝜙𝜇+𝜇− in the SM

• we do not use QCD factorization

• sizable tension between SM predictions and 

experimental results

• ”BSM best fit” ⟶ best fit point of our BSM fit 

(𝐶9,10 = 𝐶9,10
SM + 𝐶9,10

NP𝜇
)

• ”BSM benchmark” ⟶ set 𝐶9
NP𝜇

= −𝐶10
NP𝜇

= −0.5

Comparison with measurements for 𝐵 → 𝐾𝜇+𝜇− 14



tension smaller than in other works in the literature ⟶ inputs for the local FFs 𝓕𝝀

Comparison with measurements for 𝐵 → 𝐾∗𝜇+𝜇− 15



• consistent picture with the deviations
in 𝐵 → 𝐾𝜇+𝜇−, 𝐵 → 𝐾∗𝜇+𝜇−

• main source of unc. local FFs ℱ𝜆

• choice of theory inputs (local FFs ℱ𝜆) is decisive

⟶ usage of light-meson LCSRs rather than 

𝐵-meson LCSRs yields much larger tension w.r.t. data

• precise LQCD calculations at low 𝑞2 essential

to have more reliable theoretical predictions

(already available for 𝐵 → 𝐾ℓ+ℓ−)

Comparison with measurements for 𝐵𝑠 → 𝜙𝜇+𝜇− 16



use our predictions for the local and non-local FFs as priors

fit the Wilson coefficients 𝐶9
NP𝜇

and 𝐶10
NP𝜇

to the available experimental measurements in 

𝑏 → 𝑠𝜇+𝜇− transitions

(𝐶9,10 = 𝐶9,10
SM + 𝐶9,10

NP𝜇
)

we perform three fits, one for each set of the following set of experimental measurements:

(BRs, angular observables, binned and not binned)

• 𝐵 → 𝐾𝜇+𝜇− + 𝐵𝑠 → 𝜇+𝜇−

• 𝐵 → 𝐾∗𝜇+𝜇−

• 𝐵𝑠 → 𝜙𝜇+𝜇−

combined fit would be very challenging ⟶ 130 nuisance parameter

Global fit to 𝑏 → 𝑠𝜇+𝜇− (setup) 17



we obtain good fits, agreement between the three fits

substantial tension w.r.t. SM (in agreement with the literature)

pulls (𝑝 value of the SM hypothesis):

• 5.7𝜎 for 𝐵 → 𝐾𝜇+𝜇− + 𝐵𝑠 → 𝜇+𝜇−

• 2.7𝜎 for 𝐵 → 𝐾∗𝜇+𝜇−

• 2.6𝜎 for 𝐵𝑠 → 𝜙𝜇+𝜇−

local FFs ℱ𝜆 main uncertainties

non-local FFs ℋ𝜆 cannot explain this tension

Global fit to 𝑏 → 𝑠𝜇+𝜇− (results) 18



Summary and conclusion



Summary and conclusion

1. reassess BGL parametrization for local FFs 𝓕𝝀 to consider below threshold branch cut 

and obtain more constraining dispersive bound 

combine theory inputs in new dispersive analysis of the local FFs 𝓕𝝀
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and obtain more constraining dispersive bound 

combine theory inputs in new dispersive analysis of the local FFs 𝓕𝝀

2. new approach for non-local FFs ℋ𝜆 that combines our OPE calculation at 𝑞2 < 0, 

experimental data for 𝐵 → 𝐾(∗)𝐽/𝜓, and a dispersive bound

dispersive bound allows to control truncation error

ℋ𝜆 uncertainties can be systematically reduced
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Summary and conclusion

1. reassess BGL parametrization for local FFs 𝓕𝝀 to consider below threshold branch cut 

and obtain more constraining dispersive bound 

combine theory inputs in new dispersive analysis of the local FFs 𝓕𝝀

2. new approach for non-local FFs ℋ𝜆 that combines our OPE calculation at 𝑞2 < 0, 

experimental data for 𝐵 → 𝐾(∗)𝐽/𝜓, and a dispersive bound

dispersive bound allows to control truncation error

ℋ𝜆 uncertainties can be systematically reduced

3. obtain improved SM predictions using local and non-local FFs results

tension between theory and experiment ⟹ understand the origin of this tension
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Thank you!
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